sirs模型_基于plotly的数据可视化——经典传染病模型

2023-11-20 21:10

本文主要是介绍sirs模型_基于plotly的数据可视化——经典传染病模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

e93645571af7c3131b11345c5e7a464c.png

本文只讲述如何使用Python将模型中的微分方程进行可视化,具体各个模型的理论细节,请移步其他专业传染病动力学文章。

SI模型

SI模型只适合研究具有高传染风险又不能被治愈的病(比如HIV)已经患病的人就不能再被传染了 。人群分为两类 :易感者(S-susceptiable)和感染者(I-infective)

SI-Model

#SI-Modelimport scipy.integrate as spi
import numpy as np
import plotly as py
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSI(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSI,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

4dacb86b1f2a32a086a6cba5bd887fce.png
SI-Model

SIS模型

SIS模型适合研究具有传染性和反复性的流行病,和SI模型做比较,区别就是计算感染者的增加数时要 减去被治愈的人数

SIS-Model

#SIS-Modelimport scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSIS(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

a5d569a69f66dbcc0321b1415e2cd615.png
SIS-Model

SIR模型

SIR模型适合研究没有潜伏期的急性传染病,治疗后能够痊愈并具有抗病性。模型加入移出者(Removed),即被治愈的病人不会再被传染。

SIR-Model

#SIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIR(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIR-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

ef35be34e5e687ee60cda8839ba5e6ee.png
SIR-Model

SIRS模型

现实情况却是部分传染病并不会痊愈后拥有终身抗体,即被治愈的病人 仍会再被传染。SIRS模型相对SIR模型加入抗体时间

SIRS-Model

#SIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 15
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIRS(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1] - X[2] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIRS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

91a6282ef0beb03b0865fd02a5f36774.png
SIRS-Model

SEIR模型

SIR模型忽略了太多因素了导致和实际情况有较大出入,比如潜伏期,药物,出生死亡等等。接来下可以把 潜伏期考虑进去,新增一个人群,叫 潜伏者E(exposed)

SEIR-Model

#SEIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIR(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="yellow")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

13c682dbb26277249d1b689a69658ebb.png
SERI-Model

SEIRS模型

SEIRS模型即对SEIR模型 添加抗体存在时长

SEIRS-Model

#SEIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 15
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIRS(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2] - X[3] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="orange")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

143fb5dffcd3748974dc1a58b99bfa8b.png
SERIS-Model
病毒其实不可怕,你宅我宅它就挂
病毒其实不可怕,戴好口罩它也挂

参考:

关于传染病的数学模型有哪些?​www.zhihu.com
363fc313654168a2e1d3d5eef1b461d1.png
关于传染病的数学模型有哪些?​www.zhihu.com
fd1db1c8609d9317a05c6b69d5d04c2a.png
https://www.bilibili.com/video/av85508117​www.bilibili.com

这篇关于sirs模型_基于plotly的数据可视化——经典传染病模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397449

相关文章

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用