sirs模型_基于plotly的数据可视化——经典传染病模型

2023-11-20 21:10

本文主要是介绍sirs模型_基于plotly的数据可视化——经典传染病模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

e93645571af7c3131b11345c5e7a464c.png

本文只讲述如何使用Python将模型中的微分方程进行可视化,具体各个模型的理论细节,请移步其他专业传染病动力学文章。

SI模型

SI模型只适合研究具有高传染风险又不能被治愈的病(比如HIV)已经患病的人就不能再被传染了 。人群分为两类 :易感者(S-susceptiable)和感染者(I-infective)

SI-Model

#SI-Modelimport scipy.integrate as spi
import numpy as np
import plotly as py
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSI(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSI,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

4dacb86b1f2a32a086a6cba5bd887fce.png
SI-Model

SIS模型

SIS模型适合研究具有传染性和反复性的流行病,和SI模型做比较,区别就是计算感染者的增加数时要 减去被治愈的人数

SIS-Model

#SIS-Modelimport scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0)def funcSIS(inivalue,_):Y = np.zeros(2)X = inivalue# 易感个体变化Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

a5d569a69f66dbcc0321b1415e2cd615.png
SIS-Model

SIR模型

SIR模型适合研究没有潜伏期的急性传染病,治疗后能够痊愈并具有抗病性。模型加入移出者(Removed),即被治愈的病人不会再被传染。

SIR-Model

#SIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plotfig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIR(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIR-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

ef35be34e5e687ee60cda8839ba5e6ee.png
SIR-Model

SIRS模型

现实情况却是部分传染病并不会痊愈后拥有终身抗体,即被治愈的病人 仍会再被传染。SIRS模型相对SIR模型加入抗体时间

SIRS-Model

#SIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()
# N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 15
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,I_0,R_0)def funcSIRS(inivalue,_):Y = np.zeros(3)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts# 感染个体变化Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]# 治愈个体变化Y[2] = gamma * X[1] - X[2] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '感染者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '易感者'
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '治愈者'
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SIRS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

91a6282ef0beb03b0865fd02a5f36774.png
SIRS-Model

SEIR模型

SIR模型忽略了太多因素了导致和实际情况有较大出入,比如潜伏期,药物,出生死亡等等。接来下可以把 潜伏期考虑进去,新增一个人群,叫 潜伏者E(exposed)

SEIR-Model

#SEIR-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIR(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2]return YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIR,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="yellow")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERI-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

13c682dbb26277249d1b689a69658ebb.png
SERI-Model

SEIRS模型

SEIRS模型即对SEIR模型 添加抗体存在时长

SEIRS-Model

#SEIRS-Model
import scipy.integrate as spi
import numpy as np
import plotly.graph_objects as go
pyplt = py.offline.plot
fig = go.Figure()# N为人群总数
N = 10000
# β为传染率系数
beta = 0.5
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 15
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150# INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0)def funcSEIRS(inivalue,_):Y = np.zeros(4)X = inivalue# 易感个体变化Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts# 潜伏个体变化Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te# 感染个体变化Y[2] = X[1] / Te - gamma * X[2]# 治愈个体变化Y[3] = gamma * X[2] - X[3] / Tsreturn YT_range = np.arange(0,T + 1)RES = spi.odeint(funcSEIRS,INI,T_range)fig.add_trace(go.Scatter(y = RES[:,0],mode = 'lines', # 线性图name = '易感者'
))fig.add_trace(go.Scatter(y = RES[:,1],mode = 'lines', # 线性图name = '潜伏者',line=dict(color="orange")
))
fig.add_trace(go.Scatter(y = RES[:,2],mode = 'lines', # 线性图name = '感染者',line=dict(color="red")
))
fig.add_trace(go.Scatter(y = RES[:,3],mode = 'lines', # 线性图name = '治愈者',line=dict(color="green")
))fig.update_layout(yaxis={'title':'人数'},xaxis={'title':'天数'},title={'text':'SERIS-Model','xref':'paper','x':0.5,},hovermode="x",#height=600,template="plotly_white",
)fig.show()

143fb5dffcd3748974dc1a58b99bfa8b.png
SERIS-Model
病毒其实不可怕,你宅我宅它就挂
病毒其实不可怕,戴好口罩它也挂

参考:

关于传染病的数学模型有哪些?​www.zhihu.com
363fc313654168a2e1d3d5eef1b461d1.png
关于传染病的数学模型有哪些?​www.zhihu.com
fd1db1c8609d9317a05c6b69d5d04c2a.png
https://www.bilibili.com/video/av85508117​www.bilibili.com

这篇关于sirs模型_基于plotly的数据可视化——经典传染病模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397449

相关文章

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

如何在本地部署 DeepSeek Janus Pro 文生图大模型

《如何在本地部署DeepSeekJanusPro文生图大模型》DeepSeekJanusPro模型在本地成功部署,支持图片理解和文生图功能,通过Gradio界面进行交互,展示了其强大的多模态处... 目录什么是 Janus Pro1. 安装 conda2. 创建 python 虚拟环境3. 克隆 janus

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee