【飞蛾扑火优化算法】基于交叉算子和非均匀变异算子的飞蛾扑火优化算法求解单目标优化问题附matlab代码

本文主要是介绍【飞蛾扑火优化算法】基于交叉算子和非均匀变异算子的飞蛾扑火优化算法求解单目标优化问题附matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 简介

针对飞蛾扑火优化算法收敛速度慢以及计算后期易收敛到局部最优解的问题,提出了一种基于遗传算法交叉算子和非均匀变异算子的改进方法.该方法在飞蛾围绕火焰飞行的计算过程中,采用交叉算子和变异算子对火焰位置进行扰动以生成新的火焰,当新火焰的适应度值优于原火焰时则替换原火焰,以提高算法的随机性,防止算法过快陷入局部最优解.测试结果表明,改进后的算法在8个常用最优化算法基准测试函数的求解问题中全局收敛能力和收敛速度均优于原算法.

2 部分代码

%______________________________________________________________________________________________%  Moth-Flame Optimization Algorithm (MFO)                                                            %  Source codes demo version 1.0                                                                      %                                                                                                     %  Developed in MATLAB R2011b(7.13)                                                                   %                                                                                                     %  Author and programmer: Seyedali Mirjalili                                                                                                              %                                                                                                     .07.006%_______________________________________________________________________________________________% You can simply define your cost in a seperate file and load its handle to fobj % The initial parameters that you need are:%__________________________________________% fobj = @YourCostFunction% dim = number of your variables% Max_iteration = maximum number of generations% SearchAgents_no = number of search agents% lb=[lb1,lb2,...,lbn] where lbn is the lower bound of variable n% ub=[ub1,ub2,...,ubn] where ubn is the upper bound of variable n% If all the variables have equal lower bound you can just% define lb and ub as two single number numbers% To run MFO: [Best_score,Best_pos,cg_curve]=MFO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj)%______________________________________________________________________________________________function [Best_flame_score,Best_flame_pos,Convergence_curve]=MFO(N,Max_iteration,lb,ub,dim,fobj)display('MFO is optimizing your problem');%Initialize the positions of mothsMoth_pos=initialization(N,dim,ub,lb);Convergence_curve=zeros(1,Max_iteration);Iteration=1;% Main loopwhile Iteration<Max_iteration+1        % Number of flames Eq. (3.14) in the paper    Flame_no=round(N-Iteration*((N-1)/Max_iteration));        for i=1:size(Moth_pos,1)                % Check if moths go out of the search spaceand bring it back        Flag4ub=Moth_pos(i,:)>ub;        Flag4lb=Moth_pos(i,:)<lb;        Moth_pos(i,:)=(Moth_pos(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;                  % Calculate the fitness of moths        Moth_fitness(1,i)=fobj(Moth_pos(i,:));              end           if Iteration==1        % Sort the first population of moths        [fitness_sorted I]=sort(Moth_fitness);        sorted_population=Moth_pos(I,:);                % Update the flames        best_flames=sorted_population;        best_flame_fitness=fitness_sorted;    else                % Sort the moths        double_population=[previous_population;best_flames];        double_fitness=[previous_fitness best_flame_fitness];                [double_fitness_sorted I]=sort(double_fitness);        double_sorted_population=double_population(I,:);                fitness_sorted=double_fitness_sorted(1:N);        sorted_population=double_sorted_population(1:N,:);                % Update the flames        best_flames=sorted_population;        best_flame_fitness=fitness_sorted;    end        % Update the position best flame obtained so far    Best_flame_score=fitness_sorted(1);    Best_flame_pos=sorted_population(1,:);          previous_population=Moth_pos;    previous_fitness=Moth_fitness;        % a linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)    a=-1+Iteration*((-1)/Max_iteration);        for i=1:size(Moth_pos,1)                for j=1:size(Moth_pos,2)            if i<=Flame_no % Update the position of the moth with respect to its corresponsing flame                                % D in Eq. (3.13)                distance_to_flame=abs(sorted_population(i,j)-Moth_pos(i,j));                b=1;                t=(a-1)*rand+1;                                % Eq. (3.12)                Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(i,j);            end                        if i>Flame_no % Upaate the position of the moth with respct to one flame                                % Eq. (3.13)                distance_to_flame=abs(sorted_population(i,j)-Moth_pos(i,j));                b=1;                t=(a-1)*rand+1;                                % Eq. (3.12)                Moth_pos(i,j)=distance_to_flame*exp(b.*t).*cos(t.*2*pi)+sorted_population(Flame_no,j);            end                    end            end        Convergence_curve(Iteration)=Best_flame_score;        % Display the iteration and best optimum obtained so far    if mod(Iteration,50)==0        display(['At iteration ', num2str(Iteration), ' the best fitness is ', num2str(Best_flame_score)]);    end    Iteration=Iteration+1; end

3 仿真结果

4 参考文献

[1]张保东、张亚楠、郭黎明、江进礼、赵严振. 基于交叉算子和非均匀变异算子的飞蛾扑火优化算法[J]. 计算机与数字工程, 2020, 48(11):6.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

这篇关于【飞蛾扑火优化算法】基于交叉算子和非均匀变异算子的飞蛾扑火优化算法求解单目标优化问题附matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/397176

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例

JAVA Calendar设置上个月时,日期不存在或错误提示问题及解决

《JAVACalendar设置上个月时,日期不存在或错误提示问题及解决》在使用Java的Calendar类设置上个月的日期时,如果遇到不存在的日期(如4月31日),默认会自动调整到下个月的相应日期(... 目录Java Calendar设置上个月时,日期不存在或错误提示java进行日期计算时如果出现不存在的

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Nginx错误拦截转发 error_page的问题解决

《Nginx错误拦截转发error_page的问题解决》Nginx通过配置错误页面和请求处理机制,可以在请求失败时展示自定义错误页面,提升用户体验,下面就来介绍一下Nginx错误拦截转发error_... 目录1. 准备自定义错误页面2. 配置 Nginx 错误页面基础配置示例:3. 关键配置说明4. 生效

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

Nginx服务器部署详细代码实例

《Nginx服务器部署详细代码实例》Nginx是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务,:本文主要介绍Nginx服务器部署的相关资料,文中通过代码... 目录Nginx 服务器SSL/TLS 配置动态脚本反向代理总结Nginx 服务器Nginx是一个‌高性

HTML5的input标签的`type`属性值详解和代码示例

《HTML5的input标签的`type`属性值详解和代码示例》HTML5的`input`标签提供了多种`type`属性值,用于创建不同类型的输入控件,满足用户输入的多样化需求,从文本输入、密码输入、... 目录一、引言二、文本类输入类型2.1 text2.2 password2.3 textarea(严格

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建