《动手学深度学习》——2.6概率(模拟掷色子代码解析)

2023-11-20 18:50

本文主要是介绍《动手学深度学习》——2.6概率(模拟掷色子代码解析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 完整代码
  • 代码解析
  • 结果展示

完整代码

%matplotlib inline
!pip install d2l
import torch
from torch.distributions import multinomial
from d2l import torch as d2l
fair_probs = torch.ones([6]) / 6
counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)
estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)
d2l.set_figsize((6, 4.5))
for i in range(6):d2l.plt.plot(estimates[:, i].numpy(),label=("P(die=" + str(i + 1) + ")"))
d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend()

代码解析

fair_probs = torch.ones([6]) / 6

这段代码的作用是创建一个张量fair_probs,其中包含每个点数的理论概率。具体来说,它创建一个长度为6的张量,每个元素都是1/6。然后它通过除以6来将每个元素归一化为概率,以便它们的总和等于1。这样,我们就可以使用fair_probs来模拟掷骰子实验,并计算每个点数的理论概率。


counts = multinomial.Multinomial(10, fair_probs).sample((500,))
cum_counts = counts.cumsum(dim=0)

这段代码的作用是使用多项式分布模拟掷骰子实验,并计算每个点数出现的次数和累计次数。具体而言,它包括以下步骤:

multinomial.Multinomial(10, fair_probs)创建一个多项式分布对象,该对象可以模拟投掷10次骰子的实验,并使用fair_probs作为每个点数的概率。这里,fair_probs是一个长度为6的张量,其中每个元素都是1/6,表示每个点数的理论概率。

.sample((500,))使用该多项式分布对象进行500次实验,并返回一个形状为(500, 6)的张量,其中每个元素表示相应点数在该实验中出现的次数。

.cumsum(dim=0)计算每个点数的累计次数。具体而言,它在每个列向量上执行累加操作,返回一个形状为(500, 6)的张量,其中每个元素表示前i个实验中相应点数的累计次数。


estimates = cum_counts / cum_counts.sum(dim=1, keepdims=True)

这段代码的作用是计算每个点数出现的概率估计值。具体而言,它通过将每个点数的累计计数除以所有点数的累计计数之和来计算概率估计值。这个计算涉及到一些维度的操作:

cum_counts是一个形状为(500, 6)的张量,其中第i行表示前i个实验中每个点数出现的累计计数。

cum_counts.sum(dim=1, keepdims=True)表示对cum_counts的第1个维度求和,即对所有实验的累计计数求和。这将返回一个形状为(500, 1)的张量,其中每个元素都是所有点数的累计计数之和。

cum_counts / cum_counts.sum(dim=1, keepdims=True)表示将cum_counts中的每个元素除以相应的点数的累计计数之和。这将返回一个形状为(500, 6)的张量,其中每个元素都是相应点数的概率估计值。keepdims=True表示保持结果张量的维度数与输入张量的维度数相同。


d2l.set_figsize((6, 4.5))

这段代码的作用是设置图形的大小。具体而言,它使用set_figsize函数设置图形的宽度和高度。该函数需要一个形状为2的元组作为参数,其中第一个元素表示图形的宽度,第二个元素表示图形的高度。在这个例子中,宽度被设置为6,高度被设置为4.5。这将使得绘制出的图形具有与默认大小不同的外观,更适合于我们的显示需求。


for i in range(6):
d2l.plt.plot(estimates[:, i].numpy(),
label=("P(die=" + str(i + 1) + ")"))

这段代码使用一个for循环迭代6次,每次迭代都会绘制一个柱状图。在每次迭代中,它选择一个不同的点数(1到6),并绘制每个实验组的概率估计值。具体而言,estimates[:, i].numpy()选择所有实验组的第i个元素,并转换为NumPy数组。然后,它使用该数组绘制一个柱状图,并为该柱状图添加一个标签,该标签指示这个点数的出现概率。标签的格式为“P(die=X)”,其中X是点数。例如,“P(die=1)”表示点数为1的概率。因此,该代码段绘制了每个点数出现的概率随时间变化的曲线。


d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')
d2l.plt.gca().set_xlabel('Groups of experiments')
d2l.plt.gca().set_ylabel('Estimated probability')
d2l.plt.legend()

d2l.plt.axhline(y=0.167, color='black', linestyle='dashed')添加一条水平虚线,该线表示每个点数的理论概率,即1/6。这将帮助我们比较估计值和理论值之间的差距。

d2l.plt.gca().set_xlabel('Groups of experiments')和d2l.plt.gca().set_ylabel('Estimated probability')添加x轴和y轴标签,以便我们知道这个图是关于什么的,并了解每个轴的单位。

d2l.plt.legend()添加图例,以便我们知道每个线条代表什么。每个线条代表一个点数的概率估计值,标签格式为“P(die=X)”,其中X是点数。

结果展示

在这里插入图片描述

这篇关于《动手学深度学习》——2.6概率(模拟掷色子代码解析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/396698

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面