二百零三、Flume——Flume实时采集数据频率为1s的高频率Kafka数据直接写入ODS层表的HDFS文件路径下

本文主要是介绍二百零三、Flume——Flume实时采集数据频率为1s的高频率Kafka数据直接写入ODS层表的HDFS文件路径下,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目的

在离线数仓中,需要用Flume去采集Kafka中的数据,然后写入HDFS中。

由于每种数据类型的频率、数据大小、数据规模不同,因此每种数据的采集需要不同的Flume配置文件。玩了几天Flume,感觉Flume的使用难点就是配置文件

二、使用场景

静态排队数据是数据频率为1s的数据类型代表,数据量很大、频率很高,因此搞定了静态排队数据的采集就搞定了这一类高频率数据的实时采集问题

1台雷达每日的静态排队数据规模是25MB,10台雷达的数据规模则是250MB

三、静态排队数据的配置文件


## agent a1
a1.sources = s1
a1.channels = c1
a1.sinks = k1

## configure source s1
a1.sources.s1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.s1.kafka.bootstrap.servers = 192.168.0.27:9092
a1.sources.s1.kafka.topics = topic_b_queue
a1.sources.s1.kafka.consumer.group.id = queue_group
a1.sources.s1.kafka.consumer.auto.offset.reset = latest
a1.sources.s1.batchSize = 1000

## configure channel c1
## a1.channels.c1.type = memory
## a1.channels.c1.capacity = 10000
## a1.channels.c1.transactionCapacity = 1000
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /home/data/flumeData/checkpoint/queue
a1.channels.c1.dataDirs = /home/data/flumeData/flumedata/queue

## configure sink k1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://hurys23:8020/user/hive/warehouse/hurys_dc_ods.db/ods_queue/day=%Y-%m-%d/
a1.sinks.k1.hdfs.filePrefix = queue
a1.sinks.k1.hdfs.fileSuffix = .log
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 10240000
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 60
a1.sinks.k1.hdfs.minBlockReplicas = 1

## Bind the source and sink to the channel
a1.sources.s1.channels = c1
a1.sinks.k1.channel = c1

四、Flume写入HDFS结果

Flume根据时间戳按照ODS层表的分区,将数据写入对应HDFS文件

五、ODS表刷新分区后查验数据

(一)刷新表分区

MSCK REPAIR TABLE ods_queue;

(二)查看表数据

select * from ods_queue;

六、注意点

(一)配置文件中的重点是红色标记的几点

a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = second
a1.sinks.k1.hdfs.rollSize = 10240000
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.rollInterval = 0
a1.sinks.k1.hdfs.idleTimeout = 60
a1.sinks.k1.hdfs.minBlockReplicas = 1

(二)这几个重点参数的含义

序号Flume参数参数含义
1round是否启用时间上的”舍弃”,如果启用,则会影响除了%t的其他所有时间表达式                                       默认值:false
2roundValue多少时间单位创建一个新的文件夹
3roundUnit重新定义时间单位
4rollSize当临时文件达到该大小(单位:bytes)时,滚动成目标文件;默认值:1024byte            如果设置成0,则表示不根据临时文件大小来滚动文件
5rollCount当events数据达到该数量时候,将临时文件滚动成目标文件;默认值:10               如果设置成0,则表示不根据events数据来滚动文件
6rollInterval多久将临时文件滚动成最终目标文件,单位:秒;默认值:30s                    如果设置成0,则表示不根据时间来滚动文件;
7idleTimeout当目前被打开的临时文件在该参数指定的时间(秒)内,没有任何数据写入,则将该临时文件关闭并重命名成目标文件;            默认值:0
8minBlockReplicas写入HDFS文件块的最小副本数,一般配置成1才能正确滚动文件

更多Flume配置文件参数含义请看鄙人另一篇博客

一百九十一、Flume——Flume配置文件各参数含义(持续完善中)

http://t.csdnimg.cn/o5XbGicon-default.png?t=N7T8http://t.csdnimg.cn/o5XbG

就先这样吧,如果有问题的话后面再更新!!!

这篇关于二百零三、Flume——Flume实时采集数据频率为1s的高频率Kafka数据直接写入ODS层表的HDFS文件路径下的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/396439

相关文章

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Kafka拦截器的神奇操作方法

《Kafka拦截器的神奇操作方法》Kafka拦截器是一种强大的机制,用于在消息发送和接收过程中插入自定义逻辑,它们可以用于消息定制、日志记录、监控、业务逻辑集成、性能统计和异常处理等,本文介绍Kafk... 目录前言拦截器的基本概念Kafka 拦截器的定义和基本原理:拦截器是 Kafka 消息传递的不可或缺

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Python数据处理之导入导出Excel数据方式

《Python数据处理之导入导出Excel数据方式》Python是Excel数据处理的绝佳工具,通过Pandas和Openpyxl等库可以实现数据的导入、导出和自动化处理,从基础的数据读取和清洗到复杂... 目录python导入导出Excel数据开启数据之旅:为什么Python是Excel数据处理的最佳拍档