GNN教程:Weisfeiler-Leman算法-GNN能力到底有多强呢?(GCN的逐层传播公式理解)

本文主要是介绍GNN教程:Weisfeiler-Leman算法-GNN能力到底有多强呢?(GCN的逐层传播公式理解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载

目录

一、大纲

二、Weisfeiler-Leman 算法介绍

2.1 动机

2.2 Weisfeiler-Leman 算法思路

2.3 Weisfeiler-Leman 算法图形举例说明

三、Weisfeiler-Leman 算法与 GCN 间的转换

四、后话

参考


一、大纲

本文为GNN教程的第六篇文章 【Weisfeiler Leman算法】。前面的文章中,我们介绍了GNN的三个基本模型GCN、GraphSAGE、GAT,分析了经典的GCN逐层传播公式是如何由谱图卷积推导而来的。GNN模型现在正处于学术研究的热点话题,那么我们不经想问,GNN模型到底有多强呢?

我们的目的是分析GNN的表达能力,我们需要一个模型作为衡量标准。比如说如果我们想衡量GBDT的分类能力的话,通常情况下我们会使用同样的数据集,采用不同的分类模型如LR, RF, SVM等做对比。对于GNN模型,我们采用的对比模型叫做Weisfeiler-Leman,其常被用做图同构测试(Graph Isomorphism Test)图同构测试即给定两个图,返回他们的拓扑结构是否相同。图同构问题是一个非常难的问题,目前为止还没有多项式算法能够解决它,而Weisfeiler-Leman算法是一个多项式算法在大多数case上能够奏效,所以在这里我们用它来衡量GNN的表达能力,这篇博文详细介绍了Weisfeiler-Leman算法,作为我们分析GNN表达能力的基础。

图片

二、Weisfeiler-Leman 算法介绍

2.1 动机

Graph 的相似性问题是指判断给定两个 Graph 是否同构。如果两个图中对应节点的特征信息(attribute)和结构信息(structure)都相同,则称这两个图同构。因此我们需要一种高效的计算方法能够将的特征信息及结构位置信息(邻居信息)隐射到一个数值,我们称这个数值为节点的ID(Identification)。最后,两个图的相似度问题可以转化为两个图节点集合ID的 Jaccard 相似度问题

2.2 Weisfeiler-Leman 算法思路

一般地,图中的每个节点都具有特征(attribute)和结构(structure)两种信息,需要从这两方面入手,来计算几点ID。很自然地,特征信息(attribute)即节点自带的Embedding,而结构信息可以通过节点的邻居来刻画举个例子,如果两个节点Embedding相同,并且他们连接了Embedding完全相同的邻居,我们是无法区分这两个节点的,因此这两个节点ID相同。由此,可以想到,我们可以通过 hashing 来高效判断是否两个节点ID一致。1维的Weisfeiler-Lehman正是这样做的。

在上式中,F表示邻居Embedding的聚合函数,可以简单的将邻居Embedding排序后拼接起来(concatenate)。看到这里,有的读者可能产生了疑问,这个式子不是和之前GraphSAEG的跟新公式一样吗,那是不是意味着GraphSAGE具有和Weisfeiler-Leman算法相同的能力?确实这个式子在GraphSAGE中表示邻居节点的聚合(比如求和、Pooling等方式),而Hash在GraphSAGE中是一个单层的感知机。这些差别实际上导致了GraphSAGE并没有完全的Weisfeiler-Leman算法的能力,在后一篇博文中我们会详细说明它。

下面我们通过一个形象的例子来说明Weisfeiler-Leman算法具体是如何操作的。

2.3 Weisfeiler-Leman 算法图形举例说明

给定两个图G和G' ,其中每个节点的Embedding为这个节点的标签(实际应用中,有些时候我们并拿不到节点的标签,这时可以对节点都标上一个相同的标签如"1",这个时候我们将完全用节点位于图中的结构信息来区分节点,因为他们的Embedding都相同)

图片

如何比较  G和 G'的相似性问题呢?Weisfeiler-lehman 算法的思路如下:

1、对邻居节点标签信息进行聚合,以获得一个带标签的字符串(整理默认采用升序排序的方法进行排序)。

图片

第一步的结果,这里需要注意,图中利用逗号将两部分进行分开,第一部分是该节点的ID,第二部分是该节点的邻居节点ID按升序排序的结构(eg:对于节点 5,他的邻居节点为2,3,4,所以他的结果为"5,234")

2、为了能够生成一个一一对应的字典,我们将每个节点的字符串hash处理后得到节点的新ID。

图片

3、将哈希处理过的ID重新赋值给相应的结点,以完成第一次迭代。

图片

第一次迭代的结果为:

这样即可以获得图中每个节点ID。接下去,可以采用 Jaccard 公式计算G 和 G'的相似度。如果两个图同构的话,在迭代过程中和将会相同。

至此Weisfeiler-Leman算法就介绍完了,作为下一篇博文的引文,我们简要得分析一下Weisfeiler-Leman算法和GCN逐层更新公式的关系。

三、Weisfeiler-Leman 算法与 GCN 间的转换

GCN逐层更新公式为:

通过与 Weisfeiler-Lehman 算法的类比,我们可以理解即使是具有随机权重的未经训练的 GCN 模型也可以看做是图中节点的强大特征提取器。

四、后话

即使GCN、GraphSAGE、GAT和Weifeiler-Leman算法如此之像,但正如我们分析的那样,他们都做了一些近似,将Hash近似为单层感知机会导致一部分的精度损失,因为单层感知机不是单射函数。拼接邻居方式的近似引入了另一层精度损失,因为比如求和,pooling等邻居聚合方式可能作用于不同的邻居集合下而得到相同的结果,所以不管是哪个模型,都没有达到目前Weisfeiler-Leman算法在图同构问题上的能力。在下一篇博文中我们将会详细分析这些近似方法带来的损失,并给出如何解决这些问题。

参考

[1] SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS
[2] Weisfeiler-Lehman Graph Kernels
[3]《Graph learning》 图传播算法(下)

这篇关于GNN教程:Weisfeiler-Leman算法-GNN能力到底有多强呢?(GCN的逐层传播公式理解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/395566

相关文章

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑

深入理解Apache Airflow 调度器(最新推荐)

《深入理解ApacheAirflow调度器(最新推荐)》ApacheAirflow调度器是数据管道管理系统的关键组件,负责编排dag中任务的执行,通过理解调度器的角色和工作方式,正确配置调度器,并... 目录什么是Airflow 调度器?Airflow 调度器工作机制配置Airflow调度器调优及优化建议最