kaggle新赛:SenNet 3D肾脏分割大赛(3D语义分割)

2023-11-20 13:15

本文主要是介绍kaggle新赛:SenNet 3D肾脏分割大赛(3D语义分割),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

赛题名称:SenNet + HOA - Hacking the Human Vasculature in 3D

赛题链接:https://www.kaggle.com/competitions/blood-vessel-segmentation

赛题背景

目前,人类专家标注员需要手动追踪血管结构,这是一个缓慢的过程。即使有专家标注员,每个新数据集也需要6个月以上的时间才能完成。由于人体解剖学的变化以及HiP-CT技术不断改进和变化导致的图像质量变化,使用这种手动数据的机器学习方法无法很好地推广到新的数据集上。

竞赛由Common Fund的细胞衰老网络(SenNet)计划主办,旨在全面识别和描述身体各个部位、不同健康状况和生命周期中衰老细胞的差异。SenNet提供公开可访问的衰老细胞图谱,并开发基于先前单细胞分析进展的创新工具和技术。

赛题任务

这个比赛的目标是分割血管。参赛者将创建一个模型,该模型在人类肾脏的3D分层相位对比断层扫描(HiP-CT)数据上进行训练,以帮助完成整个身体的血管结构图像。

参赛者的工作将有助于研究人员更好地了解人体组织中血管的大小、形状、分支角度和模式。

评价指标

竞赛使用表面骰子度量来评估提交的内容,其公差为0.0。

提交文件

对于测试集中的每个id,参赛者必须预测 rle (一个运行长度编码的实例分割掩码),其中id 表示具有路径test/{dataset}/images/{slice}.tif的图像的{dataset}_{slice}。将空掩码的RLE表示为1 0

参赛者的投稿应包含一个标题,并具有以下格式:

id,rle
kidney_5_0,1 1 100 10
kidney_5_1,1 1 100 10
kidney_6_0,1 0
kidney_6_1,1 0
...

数据描述

这个竞赛数据集包含了几张肾脏的高分辨率3D图像以及它们的血管结构的3D分割掩码。参赛者的任务是为测试集中的肾脏数据集创建分割掩码。

这些肾脏图像是通过分层相位对比断层扫描(HiP-CT)成像获得的。HiP-CT是一种从体外器官获取高分辨率(1.4微米至50微米分辨率)3D数据的成像技术。

文件和字段信息

  • train/{dataset}/images - 包含来自几个肾脏数据集的TIFF扫描。

  • train/{dataset}/labels - 包含用于图像的血液血管分割掩码的TIFF格式。

  • {dataset}文件夹包括以下内容:
    • kidney_1_dense - 右肾整体,分辨率为50微米。

    • kidney_1_voi - kidney_1的高分辨率子集,分辨率为5.2微米。

    • kidney_2 - 来自另一个供体的肾脏整体,分辨率为50微米。

    • kidney_3_dense - 使用BM05的肾脏的一部分(500个切片),分辨率为50.16微米。

    • kidney_3_sparse - kidney_3的剩余分割掩码。

  • test/{dataset}/images - 包含测试集的TIFF扫描。

  • train_rles.csv - 训练集中图像的运行长度编码分割掩码。
    • id - 每个切片的唯一标识符,形式为{dataset}_{slice}。

    • rle - 该切片的运行长度编码掩码。

  • sample_submission.csv - 一个格式正确的示例提交文件。

时间安排

  • 2023 年 11 月 7 日 - 开始日期

  • 2024 年 1 月 30 日 - 报名截止日期

  • 2024 年 1 月 30 日 - 合并截止日期

  • 2024 年 2 月 6 日 - 最终提交截止日期

赛题奖金

  • 第一名 - 25,000美元

  • 第二名 - 20,000美元

  • 第三名 - 15,000美元

  • 第四名 - 10,000美元

  • 第五名 - 10,000美元

需要组队的私聊

关注下方【学姐带你玩AI】🚀🚀🚀

回复“比赛”获取190+场比赛top方案(kaggle、天池、ccf...)

码字不易,欢迎大家点赞评论收藏!

这篇关于kaggle新赛:SenNet 3D肾脏分割大赛(3D语义分割)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/394866

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥有47.8M的可训练参数,在一张RTX

理解分类器(linear)为什么可以做语义方向的指导?(解纠缠)

Attribute Manipulation(属性编辑)、disentanglement(解纠缠)常用的两种做法:线性探针和PCA_disentanglement和alignment-CSDN博客 在解纠缠的过程中,有一种非常简单的方法来引导G向某个方向进行生成,然后我们通过向不同的方向进行行走,那么就会得到这个属性上的图像。那么你利用多个方向进行生成,便得到了各种方向的图像,每个方向对应了很多

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

模具要不要建设3D打印中心

随着3D打印技术的日益成熟与广泛应用,模具企业迎来了自建3D打印中心的热潮。这一举措不仅为企业带来了前所未有的发展机遇,同时也伴随着一系列需要克服的挑战,如何看待企业引进增材制造,小编为您全面分析。 机遇篇: 加速产品创新:3D打印技术如同一把钥匙,为模具企业解锁了快速迭代产品设计的可能。企业能够迅速将创意转化为实体模型,缩短产品从设计到市场的周期,抢占市场先机。 强化定制化服务:面

基于YOLO8的图片实例分割系统

文章目录 在线体验快速开始一、项目介绍篇1.1 YOLO81.2 ultralytics1.3 模块介绍1.3.1 scan_task1.3.2 scan_taskflow.py1.3.3 segment_app.py 二、核心代码介绍篇2.1 segment_app.py2.2 scan_taskflow.py 三、结语 代码资源:计算机视觉领域YOLO8技术的图片实例分割实

kaggle竞赛宝典 | Mamba模型综述!

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。 原文链接:Mamba模型综述! 型语言模型(LLMs),成为深度学习的基石。尽管取得了令人瞩目的成就,Transformers仍面临固有的局限性,尤其是在推理时,由于注意力计算的平方复杂度,导致推理过程耗时较长。 最近,一种名为Mamba的新型架构应运而生,其灵感源自经典的状态空间模型,成为构建基础模型的有力替代方案

WPF入门到跪下 第十三章 3D绘图 - 3D绘图基础

3D绘图基础 四大要点 WPF中的3D绘图涉及4个要点: 视口,用来驻留3D内容3D对象照亮部分或整个3D场景的光源摄像机,提供在3D场景中进行观察的视点 一、视口 要展示3D内容,首先需要一个容器来装载3D内容。在WPF中,这个容器就是Viewport3D(3D视口),它继承自FrameworkElement,因此可以像其他元素那样在XAML中使用。 Viewport3D与其他元素相

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

图像分割分析效果2

这次加了结构化损失 # 训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915  # dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816 # 加了结构化损失后:avg_score: 0.89