ENVI IDL:如何基于气象站点数据进行反距离权重插值?

2023-11-12 00:36

本文主要是介绍ENVI IDL:如何基于气象站点数据进行反距离权重插值?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01 前言

仅仅练习,大可使用ArcGIS或者已经封装好的python模块进行插值,此处仅仅从底层理解如何从公式和代码理解反距离权重插值的过程,从而更深刻的理解IDL的使用和插值的理解。

02 函数说明

2.1 Read_CSV()函数

官方语法如下:

Result = READ_CSV( Filename [, COUNT=variable] [, HEADER=variable] [, MISSING_VALUE=value] [, N_TABLE_HEADER=value] [, NUM_RECORDS=value] [, RECORD_START=value] [, TABLE_HEADER=variable] [, TYPES=value] )

Filename表示读取的CSV文件的路径;
COUNT表示读取的CSV文件内表格的行数(不包含标签头即第一行)
HEADER表示读取的CSV文件内表头(以字符串数组存储表头信息,默认第一行记录为表头<如果有>)
MISSING_VALUE表示对于CSV文件内表格中的空值应该赋予何值呢?默认是赋予0。
N_TABLE_HEADER表示表头的行数,或许我们的表头不止一行,那么使用header就很难获取得到所有的表头信息,因此我们需要指定表头到底有多少行。一般与TABLE_HEADER连用,获取的多行表头返回给该参数,且其优先级高于header
NUM_RECORDS表示读取的总行数,默认是所有行都读取。
RECORD_START表示开始读取的行的索引,默认从0开始(0为表头行)
TYPES传入各个列的数据类型(字符串数组形式,每一列的记录的数据类型)以下是各个数据类型的参数:
在这里插入图片描述
""表示该列的数据类型自动确定数据类型。

03 代码

3.1 封装的反距离权重插值函数

;+
;   函数用途:
;       IDW插值相关(私有函数), 用于单个像元值的插值计算
;   函数参数:
;       ···
;-
function _idw, x0, y0, targets_exist, xs_exist, ys_exist,  p = pif ~keyword_set(p) then p = 2.0distances = sqrt((x0 - xs_exist) ^ 2.0 + (y0 - ys_exist) ^ 2.0)distances_coef = total(1.0 / (distances ^ p))interp_target = total(targets_exist / ((distances ^ p) * distances_coef))return, interp_target
end;+
;   函数用途:
;       该函数基于少数点位进行反距离权重插值(IDW)生成指定范围的插值栅格矩阵
;   函数参数:
;       targets_exist: 插值的目标向量(数组形式)
;       xs_exist: 与目标向量对应的X坐标向量集(数组形式)
;       ys_exist: 与目标向量对应的Y坐标向量集(数组形式)
;       out_res: 插值后输出的分辨率大小
;       target_interp: 输出插值后的目标矩阵
;-
pro idw, targets_exist, xs_exist, ys_exist, out_res, target_interp, p=pout_res_half = out_res / 2.0dx_min = min(xs_exist) - out_res_halfx_max = max(xs_exist) + out_res_halfy_min = min(ys_exist) - out_res_halfy_max = max(ys_exist) + out_res_halfcols = ceil((x_max - x_min) / out_res)rows = ceil((y_max - y_min) / out_res)target_interp = make_array(cols, rows, /double, value=!values.F_NAN)existing_cols = floor((xs_exist - x_min) / out_res)existing_rows = floor((y_max - ys_exist) / out_res)target_interp[existing_cols, existing_rows] = targets_existfor col_ix=0, cols - 1 do beginfor row_ix=0, rows - 1 do beginif ~finite(target_interp[col_ix, row_ix], /nan) then continuex0 = x_min + col_ix * out_res + out_res_halfy0 = y_max - row_ix * out_res - out_res_halftarget_interp[col_ix, row_ix] = _idw(x0, y0, targets_exist, xs_exist, ys_exist, p=p)endforendfor
end

3.2 主程序

; @Author	: ChaoQiezi
; @Time		: 2023117-下午2:17:56
; @Email	: chaoqiezi.one@qq.com; 该程序用于 对站点(CSV)文件中的空气质量参数(多种污染物浓度)进行指定范围的插值; 主程序
pro idw_interp; 准备in_path = 'D:\Objects\JuniorFallTerm\IDLProgram\Experiments\ExperimentalData\Week7\air_quality_data.csv\'out_dir = 'D:\Objects\JuniorFallTerm\IDLProgram\Experiments\ExperimentalData\Week7\out_me\'if ~file_test(out_dir, /directory) then file_mkdir, out_dirout_res = 0.001d  ; 输出分辨率,(°)out_res_half = out_res / 2.0d; 读取ds = read_csv(in_path, count=count, header=header, missing_value=!values.F_NAN)lon = ds.(0)lat = ds.(1)targets_name = header[2:*]foreach target_name, targets_name, ix do begintarget = ds.(ix + 2)idw, target, lon, lat, out_res, target_interp; 地理结构体geo_info={$MODELPIXELSCALETAG: [out_res, out_res, 0.0], $  ; 分辨率MODELTIEPOINTTAG: [0.0, 0.0, 0.0, min(lon) - out_res_half, max(lat) + out_res_half, 0.0], $  ; 角点信息GTMODELTYPEGEOKEY: 2, $  ; 设置为地理坐标系GTRASTERTYPEGEOKEY: 1, $  ; 像素的表示类型, 北上图像(North-Up)GEOGRAPHICTYPEGEOKEY: 4326, $  ; 地理坐标系为WGS84GEOGCITATIONGEOKEY: 'GCS_WGS_1984', $GEOGANGULARUNITSGEOKEY: 9102}  ; 单位为度; 输出out_path = out_dir + 'IDW_' + target_name + '.tiff'write_tiff, out_path, target_interp, geotiff=geo_info, /doubleprint, target_name, ' IDW插值完成: ', timer_keep(), ' s', format='%s%s%0.2f%s'endforeach
end

这篇关于ENVI IDL:如何基于气象站点数据进行反距离权重插值?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393887

相关文章

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图