t-SNE算法的基本思想及其Python实现

2023-11-12 00:00

本文主要是介绍t-SNE算法的基本思想及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    t-SNE全称为t-distributed Stochastic Neighbor Embedding,翻译为t-随机邻近嵌入,它是一种嵌入模型,能够将高维空间中的数据映射到低维空间中,并保留数据集的局部特性,该算法在论文中非常常见,主要用于高维数据的降维和可视化。提出论文为:Visualizing Data using t-SNE。
    t-SNE可以算是目前效果最好的数据降维和可视化方法之一,当我们想对高维数据集进行分类,但又不清楚这个数据集有没有很好的可分性(同类之间间隔小、异类之间间隔大)时,可以通过t-SNE将数据投影到2维或3维空间中观察一下:如果在低维空间中具有可分性,则数据是可分的;如果在低维空间中不可分,则可能是因为数据集本身不可分,或者数据集中的数据不适合投影到低维空间。
    t-SNE将数据点之间的相似度转化为条件概率,原始空间中数据点的相似度由高斯联合分布表示,嵌入空间中数据点的相似度由学生t分布表示。通过原始空间和嵌入空间的联合概率分布的KL散度(用于评估两个分布的相似度的指标,经常用于评估机器学习模型的好坏)来评估嵌入效果的好坏,即将有关KL散度的函数作为损失函数(loss function),通过梯度下降算法最小化损失函数,最终获得收敛结果。要注意t-SNE的缺点很明显:占用内存较多、运行时间长。
    下面参考这篇博客中的代码看一下t-SNE的效果:数据降维与可视化——t-SNE

1 降维
    首先,通过一个简单的示例看一下t-SNE的降维效果:输入4个5维的数据,通过t-SNE将其降维成2维的数据,代码如下:

import numpy as np
from sklearn.manifold import TSNE"""将3维数据降维2维"""# 4个3维的数据
x = np.array([[0, 0, 0, 1, 2], [0, 1, 1, 3, 5], [1, 0, 1, 7, 2], [1, 1, 1, 10, 22]])
# 嵌入空间的维度为2,即将数据降维成2维
ts = TSNE(n_components=2)
# 训练模型
ts.fit_transform(x)
# 打印结果
print(ts.embedding_)

        结果如图所示:
在这里插入图片描述

2 S型曲线的降维与可视化
    S型曲线中的数据是高维的数据,不同的颜色表示不同的数据点。当我们通过t-SNE将数据嵌入到2维空间中后,可以看到数据点之间的类别信息被完整地保留了下来。代码如下:

import matplotlib.pyplot as plt
from sklearn import manifold, datasets"""对S型曲线数据的降维和可视化"""# 生成1000个S型曲线数据
x, color = datasets.samples_generator.make_s_curve(n_samples=1000, random_state=0)		# x是[1000,2]的2维数据,color是[1000,1]的一维数据n_neighbors = 10
n_components = 2# 创建自定义图像
fig = plt.figure(figsize=(8, 8))		# 指定图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		# 自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		# 创建子图
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral)		# 绘制散点图,为不同标签的点赋予不同的颜色
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 初始化视角# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
# 显示图像
plt.show()

    效果如下图所示:

在这里插入图片描述

3 手写数字数据集的降维与可视化
    手写数字数据集是一个经典的图片分类数据集,数据集中包含0-9这10个数字的灰度图片,每张图片以8*8共64个像素点表示。具体代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE# 加载数据
def get_data():""":return: 数据集、标签、样本数量、特征数量"""digits = datasets.load_digits(n_class=10)data = digits.data		# 图片特征label = digits.target		# 图片标签n_samples, n_features = data.shape		# 数据集的形状return data, label, n_samples, n_features# 对样本进行预处理并画图
def plot_embedding(data, label, title):""":param data:数据集:param label:样本标签:param title:图像标题:return:图像"""x_min, x_max = np.min(data, 0), np.max(data, 0)data = (data - x_min) / (x_max - x_min)		# 对数据进行归一化处理fig = plt.figure()		# 创建图形实例ax = plt.subplot(111)		# 创建子图# 遍历所有样本for i in range(data.shape[0]):# 在图中为每个数据点画出标签plt.text(data[i, 0], data[i, 1], str(label[i]), color=plt.cm.Set1(label[i] / 10),fontdict={'weight': 'bold', 'size': 7})plt.xticks()		# 指定坐标的刻度plt.yticks()plt.title(title, fontsize=14)# 返回值return fig# 主函数,执行t-SNE降维
def main():data, label , n_samples, n_features = get_data()		# 调用函数,获取数据集信息print('Starting compute t-SNE Embedding...')ts = TSNE(n_components=2, init='pca', random_state=0)# t-SNE降维reslut = ts.fit_transform(data)# 调用函数,绘制图像fig = plot_embedding(reslut, label, 't-SNE Embedding of digits')# 显示图像plt.show()# 主函数
if __name__ == '__main__':main()

    效果截图如下:

在这里插入图片描述

References:
数据降维与可视化——t-SNE

这篇关于t-SNE算法的基本思想及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393725

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同