t-SNE算法的基本思想及其Python实现

2023-11-12 00:00

本文主要是介绍t-SNE算法的基本思想及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    t-SNE全称为t-distributed Stochastic Neighbor Embedding,翻译为t-随机邻近嵌入,它是一种嵌入模型,能够将高维空间中的数据映射到低维空间中,并保留数据集的局部特性,该算法在论文中非常常见,主要用于高维数据的降维和可视化。提出论文为:Visualizing Data using t-SNE。
    t-SNE可以算是目前效果最好的数据降维和可视化方法之一,当我们想对高维数据集进行分类,但又不清楚这个数据集有没有很好的可分性(同类之间间隔小、异类之间间隔大)时,可以通过t-SNE将数据投影到2维或3维空间中观察一下:如果在低维空间中具有可分性,则数据是可分的;如果在低维空间中不可分,则可能是因为数据集本身不可分,或者数据集中的数据不适合投影到低维空间。
    t-SNE将数据点之间的相似度转化为条件概率,原始空间中数据点的相似度由高斯联合分布表示,嵌入空间中数据点的相似度由学生t分布表示。通过原始空间和嵌入空间的联合概率分布的KL散度(用于评估两个分布的相似度的指标,经常用于评估机器学习模型的好坏)来评估嵌入效果的好坏,即将有关KL散度的函数作为损失函数(loss function),通过梯度下降算法最小化损失函数,最终获得收敛结果。要注意t-SNE的缺点很明显:占用内存较多、运行时间长。
    下面参考这篇博客中的代码看一下t-SNE的效果:数据降维与可视化——t-SNE

1 降维
    首先,通过一个简单的示例看一下t-SNE的降维效果:输入4个5维的数据,通过t-SNE将其降维成2维的数据,代码如下:

import numpy as np
from sklearn.manifold import TSNE"""将3维数据降维2维"""# 4个3维的数据
x = np.array([[0, 0, 0, 1, 2], [0, 1, 1, 3, 5], [1, 0, 1, 7, 2], [1, 1, 1, 10, 22]])
# 嵌入空间的维度为2,即将数据降维成2维
ts = TSNE(n_components=2)
# 训练模型
ts.fit_transform(x)
# 打印结果
print(ts.embedding_)

        结果如图所示:
在这里插入图片描述

2 S型曲线的降维与可视化
    S型曲线中的数据是高维的数据,不同的颜色表示不同的数据点。当我们通过t-SNE将数据嵌入到2维空间中后,可以看到数据点之间的类别信息被完整地保留了下来。代码如下:

import matplotlib.pyplot as plt
from sklearn import manifold, datasets"""对S型曲线数据的降维和可视化"""# 生成1000个S型曲线数据
x, color = datasets.samples_generator.make_s_curve(n_samples=1000, random_state=0)		# x是[1000,2]的2维数据,color是[1000,1]的一维数据n_neighbors = 10
n_components = 2# 创建自定义图像
fig = plt.figure(figsize=(8, 8))		# 指定图像的宽和高
plt.suptitle("Dimensionality Reduction and Visualization of S-Curve Data ", fontsize=14)		# 自定义图像名称# 绘制S型曲线的3D图像
ax = fig.add_subplot(211, projection='3d')		# 创建子图
ax.scatter(x[:, 0], x[:, 1], x[:, 2], c=color, cmap=plt.cm.Spectral)		# 绘制散点图,为不同标签的点赋予不同的颜色
ax.set_title('Original S-Curve', fontsize=14)
ax.view_init(4, -72)		# 初始化视角# t-SNE的降维与可视化
ts = manifold.TSNE(n_components=n_components, init='pca', random_state=0)
# 训练模型
y = ts.fit_transform(x)
ax1 = fig.add_subplot(2, 1, 2)
plt.scatter(y[:, 0], y[:, 1], c=color, cmap=plt.cm.Spectral)
ax1.set_title('t-SNE Curve', fontsize=14)
# 显示图像
plt.show()

    效果如下图所示:

在这里插入图片描述

3 手写数字数据集的降维与可视化
    手写数字数据集是一个经典的图片分类数据集,数据集中包含0-9这10个数字的灰度图片,每张图片以8*8共64个像素点表示。具体代码如下:

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE# 加载数据
def get_data():""":return: 数据集、标签、样本数量、特征数量"""digits = datasets.load_digits(n_class=10)data = digits.data		# 图片特征label = digits.target		# 图片标签n_samples, n_features = data.shape		# 数据集的形状return data, label, n_samples, n_features# 对样本进行预处理并画图
def plot_embedding(data, label, title):""":param data:数据集:param label:样本标签:param title:图像标题:return:图像"""x_min, x_max = np.min(data, 0), np.max(data, 0)data = (data - x_min) / (x_max - x_min)		# 对数据进行归一化处理fig = plt.figure()		# 创建图形实例ax = plt.subplot(111)		# 创建子图# 遍历所有样本for i in range(data.shape[0]):# 在图中为每个数据点画出标签plt.text(data[i, 0], data[i, 1], str(label[i]), color=plt.cm.Set1(label[i] / 10),fontdict={'weight': 'bold', 'size': 7})plt.xticks()		# 指定坐标的刻度plt.yticks()plt.title(title, fontsize=14)# 返回值return fig# 主函数,执行t-SNE降维
def main():data, label , n_samples, n_features = get_data()		# 调用函数,获取数据集信息print('Starting compute t-SNE Embedding...')ts = TSNE(n_components=2, init='pca', random_state=0)# t-SNE降维reslut = ts.fit_transform(data)# 调用函数,绘制图像fig = plot_embedding(reslut, label, 't-SNE Embedding of digits')# 显示图像plt.show()# 主函数
if __name__ == '__main__':main()

    效果截图如下:

在这里插入图片描述

References:
数据降维与可视化——t-SNE

这篇关于t-SNE算法的基本思想及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393725

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象