算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析

2023-11-11 22:40

本文主要是介绍算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分支界限法

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树,裁剪那些不能得到最优解的子树以提高搜索效率。

分支界限法解题的一般思路:

(1)分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约
束条件的解中找出在某种意义下的最优解。
(2)搜索方式:以广度优先或以最小耗费优先的方式搜索解空间树。分支限
界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(3)在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一
旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可
行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(4)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩
展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

旅行售货员问题

某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费),他要
选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(总
旅费)最小。
在这里插入图片描述

求解思想:

旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图 G 中找出费用最小的周游路线。路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括 V 中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。

在具体实现时,用邻接矩阵表示所给的图G。在类Traveing中用二维数组a存储图G的邻接矩阵。

template <class Type>
class Traveling
{
public:Type BBTSP(int *v, Type **, int, Type);
private:Type **a,                                   //图G的邻接矩阵NoEdge;                                //图G的无边标志int n;                                      //图G的顶点数
};

要找最小费用旅行售货员回路,选用最小堆表示活结点优先队列。最小堆中元素的类型为MinHeapNode。该类型结点包含域x,用于记录当前解;s表示结点在排列树中的层次,从排列树的根结点到该结点的路径为x[0:s],需要进一步搜索的顶点是x[s+1:n-1]。cc表示当前费用,lcost是子树费用的下界,rcost是x[x:n-1]中顶点最小出边费用和。

//队列中元素类型
template <class Type>
class MinHeapNode
{template <class T>friend class Traveling;
public:bool operator < (const MinHeapNode &MH) const{return lcost > MH.lcost;}
private:Type rcost,                                 //x[s:n-1]中顶点最小出边费用和lcost,                                 //子树费用的下界cc;                                    //当前费用int s,                                      //根结点到当前结点的路径为x[0:s]*x;                                     //需要进一步搜索的顶点是x[s+1:n-1]
};

算法开始时创建一个最小堆,表示活结点优先队列。堆中每个结点的lcost值是优先队列的优先级。接着计算出图中每个顶点的最小费用出边并用Minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的Minout作算法初始化。算法的第一个扩展结点是排列树中根结点的唯一儿子结点。在该结点处,已确定的回路中唯一顶点为顶点1.初始时有s=0,x[0]=1,x[1:n-1]=(2,3,…,n),cc=0且 rcost = \sum_{j=s}^{n}Minout[i],算法中用bestc记录当前最优值。

template <class Type>
Type Traveling<Type>::BBTSP(int *v, Type **G, int tn, Type tNoEdge)
{priority_queue<MinHeapNode<Type> > pq;MinHeapNode<Type> E, N;Type bestc, cc, rcost, MinSum, *MinOut, b;int i, j;a = G;n = tn;NoEdge = tNoEdge;MinSum = 0;                                             //最小出边费用和MinOut = new Type[n+1];                                 //计算MinOut[i]=顶点i的最小出边费用for(i = 1; i <= n; i++){MinOut[i] = NoEdge;for(j = 1; j <= n; j++)if(a[i][j] != NoEdge && (a[i][j] < MinOut[i] || MinOut[i] == NoEdge))MinOut[i] = a[i][j];if(MinOut[i] == NoEdge)                             //无回路return NoEdge;MinSum += MinOut[i];}//初始化E.s = 0;E.cc = 0;E.rcost = MinSum;E.x = new int[n];for(i = 0; i < n; i++)E.x[i] = i+1;bestc = NoEdge;//搜索排列空间树while(E.s < n-1)                                        //非叶结点{if(E.s == n-2)                                      //当前扩展结点是叶结点的父结点 再加2条边构成回路{                                                   //所构成回路是否优于当前最优解if(a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge &&(E.cc+a[E.x[n-2]][E.x[n-1]]+a[E.x[n-1]][1] < bestc || bestc==NoEdge)){//费用更小的路bestc = E.cc + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1];E.cc = bestc;E.lcost = bestc;E.s++;pq.push(E);}elsedelete []E.x;                               //舍弃扩展结点}else                                                //产生当前扩展结点儿子结点{for(i = E.s+1; i < n; i++)if(a[E.x[E.s]][E.x[i]] != NoEdge){//可行儿子结点cc = E.cc + a[E.x[E.s]][E.x[i]];        //当前费用rcost = E.rcost - MinOut[E.x[E.s]];     //更新最小出边费用和b = cc + rcost;                         //下界if(b < bestc || bestc == NoEdge)        //子树可能含最优解 结点插入最小堆{N.s = E.s + 1;N.cc = cc;N.lcost = b;N.rcost = rcost;N.x = new int[n];for(j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s+1] = E.x[i];                //获得新的路径N.x[i] = E.x[E.s+1];pq.push(N);                         //加入优先队列}}delete []E.x;                                   //完成结点扩展}if(pq.empty())                                      //堆已空break;E = pq.top();                                       //取下一扩展结点pq.pop();}if(bestc == NoEdge)                                     //无回路return NoEdge;for(i = 0; i < n; i++)                                  //将最优解复制到v[1:n]v[i+1] = E.x[i];while(pq.size())                                        //释放最小堆中所有结点{E = pq.top();pq.pop();delete []E.x;}return bestc;
}

这篇关于算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393301

相关文章

Flask解决指定端口无法生效问题

《Flask解决指定端口无法生效问题》文章讲述了在使用PyCharm开发Flask应用时,启动地址与手动指定的IP端口不一致的问题,通过修改PyCharm的运行配置,将Flask项目的运行模式从Fla... 目录android问题重现解决方案问题重现手动指定的IP端口是app.run(host='0.0.

Java实现将byte[]转换为File对象

《Java实现将byte[]转换为File对象》这篇文章将通过一个简单的例子为大家演示Java如何实现byte[]转换为File对象,并将其上传到外部服务器,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言1. 问题背景2. 环境准备3. 实现步骤3.1 从 URL 获取图片字节数据3.2 将字节数组

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

Nginx实现前端灰度发布

《Nginx实现前端灰度发布》灰度发布是一种重要的策略,它允许我们在不影响所有用户的情况下,逐步推出新功能或更新,通过灰度发布,我们可以测试新版本的稳定性和性能,下面就来介绍一下前端灰度发布的使用,感... 目录前言一、基于权重的流量分配二、基于 Cookie 的分流三、基于请求头的分流四、基于请求参数的分

Seata之分布式事务问题及解决方案

《Seata之分布式事务问题及解决方案》:本文主要介绍Seata之分布式事务问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Seata–分布式事务解决方案简介同类产品对比环境搭建1.微服务2.SQL3.seata-server4.微服务配置事务模式1

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

mysql关联查询速度慢的问题及解决

《mysql关联查询速度慢的问题及解决》:本文主要介绍mysql关联查询速度慢的问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql关联查询速度慢1. 记录原因1.1 在一次线上的服务中1.2 最终发现2. 解决方案3. 具体操作总结mysql

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

Spring MVC跨域问题及解决

《SpringMVC跨域问题及解决》:本文主要介绍SpringMVC跨域问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录跨域问题不同的域同源策略解决方法1.CORS2.jsONP3.局部解决方案4.全局解决方法总结跨域问题不同的域协议、域名、端口

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4