算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析

2023-11-11 22:40

本文主要是介绍算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分支界限法

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树,裁剪那些不能得到最优解的子树以提高搜索效率。

分支界限法解题的一般思路:

(1)分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约
束条件的解中找出在某种意义下的最优解。
(2)搜索方式:以广度优先或以最小耗费优先的方式搜索解空间树。分支限
界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(3)在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一
旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可
行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(4)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩
展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

旅行售货员问题

某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费),他要
选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(总
旅费)最小。
在这里插入图片描述

求解思想:

旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图 G 中找出费用最小的周游路线。路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括 V 中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。

在具体实现时,用邻接矩阵表示所给的图G。在类Traveing中用二维数组a存储图G的邻接矩阵。

template <class Type>
class Traveling
{
public:Type BBTSP(int *v, Type **, int, Type);
private:Type **a,                                   //图G的邻接矩阵NoEdge;                                //图G的无边标志int n;                                      //图G的顶点数
};

要找最小费用旅行售货员回路,选用最小堆表示活结点优先队列。最小堆中元素的类型为MinHeapNode。该类型结点包含域x,用于记录当前解;s表示结点在排列树中的层次,从排列树的根结点到该结点的路径为x[0:s],需要进一步搜索的顶点是x[s+1:n-1]。cc表示当前费用,lcost是子树费用的下界,rcost是x[x:n-1]中顶点最小出边费用和。

//队列中元素类型
template <class Type>
class MinHeapNode
{template <class T>friend class Traveling;
public:bool operator < (const MinHeapNode &MH) const{return lcost > MH.lcost;}
private:Type rcost,                                 //x[s:n-1]中顶点最小出边费用和lcost,                                 //子树费用的下界cc;                                    //当前费用int s,                                      //根结点到当前结点的路径为x[0:s]*x;                                     //需要进一步搜索的顶点是x[s+1:n-1]
};

算法开始时创建一个最小堆,表示活结点优先队列。堆中每个结点的lcost值是优先队列的优先级。接着计算出图中每个顶点的最小费用出边并用Minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的Minout作算法初始化。算法的第一个扩展结点是排列树中根结点的唯一儿子结点。在该结点处,已确定的回路中唯一顶点为顶点1.初始时有s=0,x[0]=1,x[1:n-1]=(2,3,…,n),cc=0且 rcost = \sum_{j=s}^{n}Minout[i],算法中用bestc记录当前最优值。

template <class Type>
Type Traveling<Type>::BBTSP(int *v, Type **G, int tn, Type tNoEdge)
{priority_queue<MinHeapNode<Type> > pq;MinHeapNode<Type> E, N;Type bestc, cc, rcost, MinSum, *MinOut, b;int i, j;a = G;n = tn;NoEdge = tNoEdge;MinSum = 0;                                             //最小出边费用和MinOut = new Type[n+1];                                 //计算MinOut[i]=顶点i的最小出边费用for(i = 1; i <= n; i++){MinOut[i] = NoEdge;for(j = 1; j <= n; j++)if(a[i][j] != NoEdge && (a[i][j] < MinOut[i] || MinOut[i] == NoEdge))MinOut[i] = a[i][j];if(MinOut[i] == NoEdge)                             //无回路return NoEdge;MinSum += MinOut[i];}//初始化E.s = 0;E.cc = 0;E.rcost = MinSum;E.x = new int[n];for(i = 0; i < n; i++)E.x[i] = i+1;bestc = NoEdge;//搜索排列空间树while(E.s < n-1)                                        //非叶结点{if(E.s == n-2)                                      //当前扩展结点是叶结点的父结点 再加2条边构成回路{                                                   //所构成回路是否优于当前最优解if(a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge &&(E.cc+a[E.x[n-2]][E.x[n-1]]+a[E.x[n-1]][1] < bestc || bestc==NoEdge)){//费用更小的路bestc = E.cc + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1];E.cc = bestc;E.lcost = bestc;E.s++;pq.push(E);}elsedelete []E.x;                               //舍弃扩展结点}else                                                //产生当前扩展结点儿子结点{for(i = E.s+1; i < n; i++)if(a[E.x[E.s]][E.x[i]] != NoEdge){//可行儿子结点cc = E.cc + a[E.x[E.s]][E.x[i]];        //当前费用rcost = E.rcost - MinOut[E.x[E.s]];     //更新最小出边费用和b = cc + rcost;                         //下界if(b < bestc || bestc == NoEdge)        //子树可能含最优解 结点插入最小堆{N.s = E.s + 1;N.cc = cc;N.lcost = b;N.rcost = rcost;N.x = new int[n];for(j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s+1] = E.x[i];                //获得新的路径N.x[i] = E.x[E.s+1];pq.push(N);                         //加入优先队列}}delete []E.x;                                   //完成结点扩展}if(pq.empty())                                      //堆已空break;E = pq.top();                                       //取下一扩展结点pq.pop();}if(bestc == NoEdge)                                     //无回路return NoEdge;for(i = 0; i < n; i++)                                  //将最优解复制到v[1:n]v[i+1] = E.x[i];while(pq.size())                                        //释放最小堆中所有结点{E = pq.top();pq.pop();delete []E.x;}return bestc;
}

这篇关于算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393301

相关文章

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

nginx 负载均衡配置及如何解决重复登录问题

《nginx负载均衡配置及如何解决重复登录问题》文章详解Nginx源码安装与Docker部署,介绍四层/七层代理区别及负载均衡策略,通过ip_hash解决重复登录问题,对nginx负载均衡配置及如何... 目录一:源码安装:1.配置编译参数2.编译3.编译安装 二,四层代理和七层代理区别1.二者混合使用举例

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串