算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析

2023-11-11 22:40

本文主要是介绍算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分支界限法

分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树,裁剪那些不能得到最优解的子树以提高搜索效率。

分支界限法解题的一般思路:

(1)分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约
束条件的解中找出在某种意义下的最优解。
(2)搜索方式:以广度优先或以最小耗费优先的方式搜索解空间树。分支限
界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。
(3)在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一
旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可
行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。
(4)此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩
展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

旅行售货员问题

某售货员要到若干城市去推销商品,已知各城市之间的路程(旅费),他要
选定一条从驻地出发,经过每个城市一遍,最后回到驻地的路线,使总的路程(总
旅费)最小。
在这里插入图片描述

求解思想:

旅行售货员问题的解空间可以组织成一棵树,从树的根结点到任一叶结点的路径定义了图的一条周游路线。旅行售货员问题要在图 G 中找出费用最小的周游路线。路线是一个带权图。图中各边的费用(权)为正数。图的一条周游路线是包括 V 中的每个顶点在内的一条回路。周游路线的费用是这条路线上所有边的费用之和。

在具体实现时,用邻接矩阵表示所给的图G。在类Traveing中用二维数组a存储图G的邻接矩阵。

template <class Type>
class Traveling
{
public:Type BBTSP(int *v, Type **, int, Type);
private:Type **a,                                   //图G的邻接矩阵NoEdge;                                //图G的无边标志int n;                                      //图G的顶点数
};

要找最小费用旅行售货员回路,选用最小堆表示活结点优先队列。最小堆中元素的类型为MinHeapNode。该类型结点包含域x,用于记录当前解;s表示结点在排列树中的层次,从排列树的根结点到该结点的路径为x[0:s],需要进一步搜索的顶点是x[s+1:n-1]。cc表示当前费用,lcost是子树费用的下界,rcost是x[x:n-1]中顶点最小出边费用和。

//队列中元素类型
template <class Type>
class MinHeapNode
{template <class T>friend class Traveling;
public:bool operator < (const MinHeapNode &MH) const{return lcost > MH.lcost;}
private:Type rcost,                                 //x[s:n-1]中顶点最小出边费用和lcost,                                 //子树费用的下界cc;                                    //当前费用int s,                                      //根结点到当前结点的路径为x[0:s]*x;                                     //需要进一步搜索的顶点是x[s+1:n-1]
};

算法开始时创建一个最小堆,表示活结点优先队列。堆中每个结点的lcost值是优先队列的优先级。接着计算出图中每个顶点的最小费用出边并用Minout记录。如果所给的有向图中某个顶点没有出边,则该图不可能有回路,算法即告结束。如果每个顶点都有出边,则根据计算出的Minout作算法初始化。算法的第一个扩展结点是排列树中根结点的唯一儿子结点。在该结点处,已确定的回路中唯一顶点为顶点1.初始时有s=0,x[0]=1,x[1:n-1]=(2,3,…,n),cc=0且 rcost = \sum_{j=s}^{n}Minout[i],算法中用bestc记录当前最优值。

template <class Type>
Type Traveling<Type>::BBTSP(int *v, Type **G, int tn, Type tNoEdge)
{priority_queue<MinHeapNode<Type> > pq;MinHeapNode<Type> E, N;Type bestc, cc, rcost, MinSum, *MinOut, b;int i, j;a = G;n = tn;NoEdge = tNoEdge;MinSum = 0;                                             //最小出边费用和MinOut = new Type[n+1];                                 //计算MinOut[i]=顶点i的最小出边费用for(i = 1; i <= n; i++){MinOut[i] = NoEdge;for(j = 1; j <= n; j++)if(a[i][j] != NoEdge && (a[i][j] < MinOut[i] || MinOut[i] == NoEdge))MinOut[i] = a[i][j];if(MinOut[i] == NoEdge)                             //无回路return NoEdge;MinSum += MinOut[i];}//初始化E.s = 0;E.cc = 0;E.rcost = MinSum;E.x = new int[n];for(i = 0; i < n; i++)E.x[i] = i+1;bestc = NoEdge;//搜索排列空间树while(E.s < n-1)                                        //非叶结点{if(E.s == n-2)                                      //当前扩展结点是叶结点的父结点 再加2条边构成回路{                                                   //所构成回路是否优于当前最优解if(a[E.x[n-2]][E.x[n-1]] != NoEdge && a[E.x[n-1]][1] != NoEdge &&(E.cc+a[E.x[n-2]][E.x[n-1]]+a[E.x[n-1]][1] < bestc || bestc==NoEdge)){//费用更小的路bestc = E.cc + a[E.x[n-2]][E.x[n-1]] + a[E.x[n-1]][1];E.cc = bestc;E.lcost = bestc;E.s++;pq.push(E);}elsedelete []E.x;                               //舍弃扩展结点}else                                                //产生当前扩展结点儿子结点{for(i = E.s+1; i < n; i++)if(a[E.x[E.s]][E.x[i]] != NoEdge){//可行儿子结点cc = E.cc + a[E.x[E.s]][E.x[i]];        //当前费用rcost = E.rcost - MinOut[E.x[E.s]];     //更新最小出边费用和b = cc + rcost;                         //下界if(b < bestc || bestc == NoEdge)        //子树可能含最优解 结点插入最小堆{N.s = E.s + 1;N.cc = cc;N.lcost = b;N.rcost = rcost;N.x = new int[n];for(j = 0; j < n; j++)N.x[j] = E.x[j];N.x[E.s+1] = E.x[i];                //获得新的路径N.x[i] = E.x[E.s+1];pq.push(N);                         //加入优先队列}}delete []E.x;                                   //完成结点扩展}if(pq.empty())                                      //堆已空break;E = pq.top();                                       //取下一扩展结点pq.pop();}if(bestc == NoEdge)                                     //无回路return NoEdge;for(i = 0; i < n; i++)                                  //将最优解复制到v[1:n]v[i+1] = E.x[i];while(pq.size())                                        //释放最小堆中所有结点{E = pq.top();pq.pop();delete []E.x;}return bestc;
}

这篇关于算法设计: 五、分支界限法(1. 旅行售货员问题)—— C++实现 - 算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/393301

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�