一个简单实用的评价模型——TOPSIS理想解法

2023-11-11 21:10

本文主要是介绍一个简单实用的评价模型——TOPSIS理想解法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

​Hello!大家好,今天给大家介绍的是一个非常简单实用又好理解的评价模型——TOPSIS理想解法。本次案例的理论知识和数据均来自于《数学建模与数学实验》这本书,如果有想看该书的小伙伴,可在公众号中回复“《数学建模与数学实验》”(注意要打“《》”),即可获得该书的电子版,废话不多说,咱们直接进入正题。

TOPSIS理想解法

  • TOPSIS原理
    • 基本原理
    • 算法步骤
  • Python代码实现
  • 获得代码

TOPSIS原理

基本原理

(1)将n个评价指标看成n条坐标轴,由此可以构造出一个n维空间,则每个待评价的对象依照其各项指标的数据就对应n维空间中一个坐标点。
(2)针对各项指标从所有待评价对象中选出该指标的最优值(理想解,对应最优坐标点)和最差值(负理想解,对应最差坐标点),依次求出各个待评价对象的坐标点分别到最优坐标点和最差坐标点的距离d*和d0。
在这里插入图片描述
(3)构造评价参考值
在这里插入图片描述
则f值越大代表评价结果越优。

算法步骤

(1)构造决策矩阵A=(aij)m×n,每一列是一个评价指标,每一行是一条待评价样本;为去掉量纲效应,做规范化处理得到B=(bij)m×n,其中
在这里插入图片描述
注:该规范化法处理后,各评价样本的同一评价指标值的平方和为1,适合TOPSIS法中计算欧氏距离的场合。
(2)根据每个评价指标对评价结果的贡献程度的不同,指定不同的权重:w=[w1,…,wn],将B的第j列乘以其权重wj,得到加权规范矩阵C=(cij)m×n。
(3)确定正理想解C*和负理想解C0:
在这里插入图片描述
其中,
在这里插入图片描述
在这里插入图片描述

(4)计算每个待评价样本到正理想解和负理想解的距离:
在这里插入图片描述
在这里插入图片描述
(5)计算每个待评价样本的评价参考值
在这里插入图片描述
再将fi从大到小排列,得到各评价样本的优劣结果。

在原书中,是以MATLAB进行实现,但当下Python当道,我们当然也要尝试用Python来实现看看!

Python代码实现

以下是五所研究生院的基本情况,我们要根据“人均专著”、“生师比”、“科研经费”、“逾期毕业率”四个方面来为这五所研究生院进行一个排名。
在这里插入图片描述
首先,先加载所需要的库,并读取数据:

import pandas as pd
import numpy as np
data = pd.read_excel("D:\\公众号\\TOPSIS(理想算法)\\Graduate.xlsx", index_col = 0)

在这里插入图片描述
然后,构建决策矩阵:

A = data.values

在这里插入图片描述
接着,对决策矩阵A进行规范化处理:

B = np.zeros((5,4))
for i in range(0, A.shape[1]):B[:, i] = A[:, i]/np.linalg.norm(A[:, i])

在这里插入图片描述
参数说明:
np.linalg.norm(x, ord=None, axis=None, keepdims=False)
1、x:表示矩阵(也可以是一维);
2、ord:范数类型,默认值为None
在这里插入图片描述
3、axis:处理类型,默认值为None
axis=1表示按行向量处理,求多个行向量的范数
axis=0表示按列向量处理,求多个列向量的范数
axis=None表示矩阵范数
4、keepding:是否保持矩阵的二维特征,默认值为False
True表示保持矩阵的二维特性,False反之。

然后我们对四个维度设置相对应的权重,这里我们是根据2:3:4:1人为设定,当然也可以结合嫡值法进行定权:

w = np.array([0.2, 0.3, 0.4, 0.1])

在这里插入图片描述

C = B * w.T 

在这里插入图片描述
紧接着我们要求出正理想解和负理想解;
首先,先按列取最大值,求正理想解:

Cstar = C.max(axis=0)

在这里插入图片描述
但由于第四个指标是负向指标,即值越小越好,所以我们的正理想解的第四个指标应该取最小值:

Cstar[3] = C[:, 3].min()

在这里插入图片描述

同理,我们可求出负理想解:

C0 = C.min(axis=0) 
C0[3] = C[:, 3].max()

在这里插入图片描述

然后,就可以求各个样本到正负理想解的距离:

Sstar = np.zeros((1,5))
S0 = np.zeros((1,5))
for i in range(0, C.shape[0]):Sstar[:, i] = np.linalg.norm(C[i, :]-Cstar) S0[:, i] = np.linalg.norm(C[i, :]-C0)

在这里插入图片描述
再根据各样本到正负理想解的距离计算每个待评价样本的评价参考值:

f = S0/(S0 + Sstar)

在这里插入图片描述
最后,我们需要根据评价参考值,从大到小进行排序,展示出来即可:

ind = data.index.values
result = np.insert(f.T, 0, values = ind, axis = 1)
pd.DataFrame(result[np.lexsort(-result.T)], columns = ['对象', '得分'])

在这里插入图片描述
参数说明:
numpy.insert(arr, obj, values, axis)
1、arr:输入数组
2、obj:在其之前插入值的索引
3、values:要插入的值
4、axis:沿着它插入的轴,如果未提供,则输入数组会被展开

最后,我将以上的代码进行了整理,打包成了一个函数,以便大家使用,公众号中回复“TOPSIS”即可获得。

TOPSIS(path = "D:\\公众号\\TOPSIS(理想算法)\\Graduate.xlsx", index = 0, weight = [0.2, 0.3, 0.4, 0.1], postive = [3])

在这里插入图片描述

获得代码

以下是我的个人公众号,本文完整代码已上传,关注公众号回复“TOPSIS”,即可获得,回复“《数学建模与数学实验》”(注意要打“《》”),即可获得该书的电子版,谢谢大家支持。
在这里插入图片描述

这篇关于一个简单实用的评价模型——TOPSIS理想解法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/392858

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}