【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码)

本文主要是介绍【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导语

哈喽大家好呀!我是每天疯狂赶代码的木木子吖~情人节快乐呀!

所有文章完整的素材+源码都在👇👇

粉丝白嫖源码福利,请移步至CSDN社区或文末公众hao即可免费。

我们都知道,有很多经典的老照片,受限于那个时代的技术,只能以黑白的形式传世。尽管黑

白照片别有一番风味,但是彩色照片有时候能给人更强的代入感。今天在这里给大家提供一种

给黑白照片上色的方法,尽管无法还原当时真实的颜色,但确实可以达到后期者的心中所想的

颜色。

当然,除了让老照片变成彩色这一用途之外,还可以将现时的一些黑白照片自行染上彩色,完

全按照自己的想法来上色,再和彩色的原图进行对比,也不失为一种有趣的玩法。

——小故事

年前在家中进行过年春节大扫除的时候,意外发现了爷爷奶奶年轻时的照片,只不过当时的拍

摄技术还不发达,出来的相片都是黑白色的。所以我想将它们还原成彩色,给他们一个惊喜!

我不是敲代码的蛮,于是今天在情人节这天偷偷把老照片进行了一个色彩修复,这次尝试还别

说,亲测了一下效果感觉效果还不错,于是今天打算将它们分享给有同样想法的你们。

旧时代的爷爷奶奶、外公外婆的照片都可以进行一个色彩修复哦,超惊艳滴~

如果你也想知道黑白照片还原成彩色怎么弄的话,就赶紧跟着我的步骤一步步操作起来吧,过

程并不繁琐,就算你是修图小白也可以轻松驾驭!(只要你会代码一切皆有可能~厚脸皮.jpg)

正文

利用图像处理技术,基于数字化存储的玻璃底板图像自动生成尽量非虚化的彩色图像。从原始

图像文件中分割提取三个彩色通道图像,将它们对齐并彼此叠加在一起,最终形成一张RGB彩

色图像。

一、环境准备

 1)运行环境 

 本文用到的环境如下—— 

 Python3、Pycharm社区版,第三方模块:Opencv、numpy。

部分自带的模块只要安装完 Python就可以直接使用了,需要安装 的库的话看教程下🎐

 模块安装👇:

pip install +模块名 镜像源安装:pip install -i https://pypi.douban.com/simple/+模块名 (之前有说过安装报错的几种方式跟解决方法,不会安装的可以去看下,还有很多国内镜像源也有文章的) 

 图片文本素材等👇——

都是一些老照片,大家可以随便准备一些哈,当然需要完整的素材图片跟源码的文末找我即可!

二、代码展示

1) fixTif.py: tif图像的修复,使用的是openCV内置的高斯金字塔

import numpy as np
import cv2 as cvdef img_translate(img, tx, ty):"""对图像进行平移"""heigh, width = img.shape[:2]m = np.float32([[1, 0, tx], [0,1, ty]])res = cv.warpAffine(img, m, (width, heigh))return resdef ssd(I1, I2):"""ssd函数,衡量颜色通道是否对齐"""return np.sum((I1 - I2)*(I1 - I2))def find_xy(img1, g):"""找到最佳的平移参数,并对该颜色通道图片进行平移"""# 初始化loss = ssd(img1, g)img = img1u = 0v = 0# 根据ssd函数寻找最佳的对齐位置for i in range(-20, 30):for j in range(-20, 30):img2 = img_translate(img1, i, j)loss1 = ssd(img2, g)if loss > loss1:loss = loss1img = img2u = iv = jprint(u, v)return imgdef readImage(imname):"""read in the image"""im = cv.imread(imname)im = cv.cvtColor(im, cv.COLOR_BGR2GRAY)return imdef separate(im):"""separate color channels"""# compute the height of each part (just 1/3 of total)height = np.floor(im.shape[0] / 3.0).astype(np.int)b = im[:height]g = im[height: 2 * height]r = im[2 * height: 3 * height]return b, g, rdef merge(b,g,r):"""将三个颜色通道进行merge"""return cv.merge((b,g,r))def gaussianPyramid(img):"""直接使用OpenCV的高斯金字塔进行实现"""return cv.pyrDown(img)if __name__ == '__main__':# name of the input file#imname = 'images/train.tif'imname = 'images/three_generations.tif'#imname = 'images/lady.tif'#imname = 'images/emir.tif'#imname = 'images/icon.tif'#imname = 'images/self_portrait.tif'#imname = 'images/village.tif'#imname = 'images/turkmen.tif'im = readImage(imname)print(im.shape)#cv.imshow("source image", im)# 获取平均切割的三个颜色通道b, g, r = separate(im)# 对三个颜色通道分别应用高斯金字塔b = gaussianPyramid(b)b = gaussianPyramid(b)b = gaussianPyramid(b)g = gaussianPyramid(g)g = gaussianPyramid(g)g = gaussianPyramid(g)r = gaussianPyramid(r)r = gaussianPyramid(r)r = gaussianPyramid(r)im_out0 = merge(b, g, r)cv.imshow("before", im_out0)# 颜色通道平移进行对齐,对齐的过程中以绿色作为基准b = find_xy(b, g)r = find_xy(r, g)# 将平移处理后的三通道merge,得到处理后的图片im_out1im_out1 = merge(b, g, r)# 将修复后的图片写进磁盘#cv.imwrite('out/after_' + imname[7:], im_out1)cv.imshow("after", im_out1)#print(im_out1.shape)cv.waitKey(0)

2)运行程序

import numpy as np
import cv2 as cv# name of the input file
imname = 'images/monastery.jpg'# read in the image
im = cv.imread(imname)
im = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
print(im.shape)
cv.imshow("source image", im)# convert to double (might want to do this later on to save memory)
# im = img_as_float(im)# compute the height of each part (just 1/3 of total)
height = np.floor(im.shape[0] / 3.0).astype(np.int)# separate color channels
b = im[:height]
g = im[height: 2 * height]
r = im[2 * height: 3 * height]# align the images
# functions that might be useful for aligning the images include: np.roll, np.sum
# ag = align(g, b)
# ar = align(r, b)# create a color image
# im_out = cv.merge((ar, ag, b))  # this line should be activated after implementing the align functions
im_out = cv.merge((b, g, r))        # this line should be deleted after implementing the align functions# save and display the output image
cv.imwrite("out/out_fname.jpg", im_out)
cv.imshow("output image", im_out)cv.waitKey(0)

三、效果展示

1)黑白照片风景上色

2)黑白照片色彩修复多图

3)黑白照片-奥黛丽赫本彩色

4)黑白照片-结婚老照片上色

总结

大家看完以上详细教程,学会黑白照片还原成彩色怎么弄了吗?如果你们有更简单的方法,欢

迎在评论区分享出来,我们可以一块探讨一番~

好啦。今天的内容写到这里旧正式结束了哈,喜欢的小可爱三连领取免费的源码哦👇

🎯完整的免费源码领取处:找我吖!文末公众hao可自行领取,滴滴我也可!

🔨推荐往期文章——

项目1.1  动漫化人物

【突破次元壁】谁说二次元离我们遥远?Python特效火遍全网,关键技术原来是它。

项目1.2  颜值打分系统

Python小测试 2021最新男女颜值打分小系统标准出炉,看哭无数人...

项目3.0  Opencv换背景图

【Opencv实战】AI换背景:朋友结婚没有蓝天白云怎么办?幸亏我急中生智。

 项目3.1    抠图神器

【爆赞】这款Python小程序自动抠图只需5秒,秒杀PS手动抠图?

项目3.3  图片处理加/去水印

【一篇解决】Python图片处理: 去水印/加水印—这几个方法你一定要学会,太神奇了~(建议保留)

项目3.4  Opencv水果识别小程序

【Opencv实战】识别水果的软件叫什么?一款超好用的识别软件分享,一秒鉴定(真是活~久~见~啊)

🎄文章汇总——

汇总合集 Python—2022 |已有文章汇总 | 持续更新,直接看这篇就够了

(更多内容+源码都在✨文章汇总哦!!欢迎阅读喜欢的文章🎉~

这篇关于【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391807

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Pandas使用SQLite3实战

《Pandas使用SQLite3实战》本文主要介绍了Pandas使用SQLite3实战,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1 环境准备2 从 SQLite3VlfrWQzgt 读取数据到 DataFrame基础用法:读

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、