【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码)

本文主要是介绍【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导语

哈喽大家好呀!我是每天疯狂赶代码的木木子吖~情人节快乐呀!

所有文章完整的素材+源码都在👇👇

粉丝白嫖源码福利,请移步至CSDN社区或文末公众hao即可免费。

我们都知道,有很多经典的老照片,受限于那个时代的技术,只能以黑白的形式传世。尽管黑

白照片别有一番风味,但是彩色照片有时候能给人更强的代入感。今天在这里给大家提供一种

给黑白照片上色的方法,尽管无法还原当时真实的颜色,但确实可以达到后期者的心中所想的

颜色。

当然,除了让老照片变成彩色这一用途之外,还可以将现时的一些黑白照片自行染上彩色,完

全按照自己的想法来上色,再和彩色的原图进行对比,也不失为一种有趣的玩法。

——小故事

年前在家中进行过年春节大扫除的时候,意外发现了爷爷奶奶年轻时的照片,只不过当时的拍

摄技术还不发达,出来的相片都是黑白色的。所以我想将它们还原成彩色,给他们一个惊喜!

我不是敲代码的蛮,于是今天在情人节这天偷偷把老照片进行了一个色彩修复,这次尝试还别

说,亲测了一下效果感觉效果还不错,于是今天打算将它们分享给有同样想法的你们。

旧时代的爷爷奶奶、外公外婆的照片都可以进行一个色彩修复哦,超惊艳滴~

如果你也想知道黑白照片还原成彩色怎么弄的话,就赶紧跟着我的步骤一步步操作起来吧,过

程并不繁琐,就算你是修图小白也可以轻松驾驭!(只要你会代码一切皆有可能~厚脸皮.jpg)

正文

利用图像处理技术,基于数字化存储的玻璃底板图像自动生成尽量非虚化的彩色图像。从原始

图像文件中分割提取三个彩色通道图像,将它们对齐并彼此叠加在一起,最终形成一张RGB彩

色图像。

一、环境准备

 1)运行环境 

 本文用到的环境如下—— 

 Python3、Pycharm社区版,第三方模块:Opencv、numpy。

部分自带的模块只要安装完 Python就可以直接使用了,需要安装 的库的话看教程下🎐

 模块安装👇:

pip install +模块名 镜像源安装:pip install -i https://pypi.douban.com/simple/+模块名 (之前有说过安装报错的几种方式跟解决方法,不会安装的可以去看下,还有很多国内镜像源也有文章的) 

 图片文本素材等👇——

都是一些老照片,大家可以随便准备一些哈,当然需要完整的素材图片跟源码的文末找我即可!

二、代码展示

1) fixTif.py: tif图像的修复,使用的是openCV内置的高斯金字塔

import numpy as np
import cv2 as cvdef img_translate(img, tx, ty):"""对图像进行平移"""heigh, width = img.shape[:2]m = np.float32([[1, 0, tx], [0,1, ty]])res = cv.warpAffine(img, m, (width, heigh))return resdef ssd(I1, I2):"""ssd函数,衡量颜色通道是否对齐"""return np.sum((I1 - I2)*(I1 - I2))def find_xy(img1, g):"""找到最佳的平移参数,并对该颜色通道图片进行平移"""# 初始化loss = ssd(img1, g)img = img1u = 0v = 0# 根据ssd函数寻找最佳的对齐位置for i in range(-20, 30):for j in range(-20, 30):img2 = img_translate(img1, i, j)loss1 = ssd(img2, g)if loss > loss1:loss = loss1img = img2u = iv = jprint(u, v)return imgdef readImage(imname):"""read in the image"""im = cv.imread(imname)im = cv.cvtColor(im, cv.COLOR_BGR2GRAY)return imdef separate(im):"""separate color channels"""# compute the height of each part (just 1/3 of total)height = np.floor(im.shape[0] / 3.0).astype(np.int)b = im[:height]g = im[height: 2 * height]r = im[2 * height: 3 * height]return b, g, rdef merge(b,g,r):"""将三个颜色通道进行merge"""return cv.merge((b,g,r))def gaussianPyramid(img):"""直接使用OpenCV的高斯金字塔进行实现"""return cv.pyrDown(img)if __name__ == '__main__':# name of the input file#imname = 'images/train.tif'imname = 'images/three_generations.tif'#imname = 'images/lady.tif'#imname = 'images/emir.tif'#imname = 'images/icon.tif'#imname = 'images/self_portrait.tif'#imname = 'images/village.tif'#imname = 'images/turkmen.tif'im = readImage(imname)print(im.shape)#cv.imshow("source image", im)# 获取平均切割的三个颜色通道b, g, r = separate(im)# 对三个颜色通道分别应用高斯金字塔b = gaussianPyramid(b)b = gaussianPyramid(b)b = gaussianPyramid(b)g = gaussianPyramid(g)g = gaussianPyramid(g)g = gaussianPyramid(g)r = gaussianPyramid(r)r = gaussianPyramid(r)r = gaussianPyramid(r)im_out0 = merge(b, g, r)cv.imshow("before", im_out0)# 颜色通道平移进行对齐,对齐的过程中以绿色作为基准b = find_xy(b, g)r = find_xy(r, g)# 将平移处理后的三通道merge,得到处理后的图片im_out1im_out1 = merge(b, g, r)# 将修复后的图片写进磁盘#cv.imwrite('out/after_' + imname[7:], im_out1)cv.imshow("after", im_out1)#print(im_out1.shape)cv.waitKey(0)

2)运行程序

import numpy as np
import cv2 as cv# name of the input file
imname = 'images/monastery.jpg'# read in the image
im = cv.imread(imname)
im = cv.cvtColor(im, cv.COLOR_BGR2GRAY)
print(im.shape)
cv.imshow("source image", im)# convert to double (might want to do this later on to save memory)
# im = img_as_float(im)# compute the height of each part (just 1/3 of total)
height = np.floor(im.shape[0] / 3.0).astype(np.int)# separate color channels
b = im[:height]
g = im[height: 2 * height]
r = im[2 * height: 3 * height]# align the images
# functions that might be useful for aligning the images include: np.roll, np.sum
# ag = align(g, b)
# ar = align(r, b)# create a color image
# im_out = cv.merge((ar, ag, b))  # this line should be activated after implementing the align functions
im_out = cv.merge((b, g, r))        # this line should be deleted after implementing the align functions# save and display the output image
cv.imwrite("out/out_fname.jpg", im_out)
cv.imshow("output image", im_out)cv.waitKey(0)

三、效果展示

1)黑白照片风景上色

2)黑白照片色彩修复多图

3)黑白照片-奥黛丽赫本彩色

4)黑白照片-结婚老照片上色

总结

大家看完以上详细教程,学会黑白照片还原成彩色怎么弄了吗?如果你们有更简单的方法,欢

迎在评论区分享出来,我们可以一块探讨一番~

好啦。今天的内容写到这里旧正式结束了哈,喜欢的小可爱三连领取免费的源码哦👇

🎯完整的免费源码领取处:找我吖!文末公众hao可自行领取,滴滴我也可!

🔨推荐往期文章——

项目1.1  动漫化人物

【突破次元壁】谁说二次元离我们遥远?Python特效火遍全网,关键技术原来是它。

项目1.2  颜值打分系统

Python小测试 2021最新男女颜值打分小系统标准出炉,看哭无数人...

项目3.0  Opencv换背景图

【Opencv实战】AI换背景:朋友结婚没有蓝天白云怎么办?幸亏我急中生智。

 项目3.1    抠图神器

【爆赞】这款Python小程序自动抠图只需5秒,秒杀PS手动抠图?

项目3.3  图片处理加/去水印

【一篇解决】Python图片处理: 去水印/加水印—这几个方法你一定要学会,太神奇了~(建议保留)

项目3.4  Opencv水果识别小程序

【Opencv实战】识别水果的软件叫什么?一款超好用的识别软件分享,一秒鉴定(真是活~久~见~啊)

🎄文章汇总——

汇总合集 Python—2022 |已有文章汇总 | 持续更新,直接看这篇就够了

(更多内容+源码都在✨文章汇总哦!!欢迎阅读喜欢的文章🎉~

这篇关于【Opencv实战】几十年前的Vlog火了:黑白老照片如何上色?这黑科技操作一定要知道,复原度超高,竟美的出奇~(图像修复神级代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/391807

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

vscode保存代码时自动eslint格式化图文教程

《vscode保存代码时自动eslint格式化图文教程》:本文主要介绍vscode保存代码时自动eslint格式化的相关资料,包括打开设置文件并复制特定内容,文中通过代码介绍的非常详细,需要的朋友... 目录1、点击设置2、选择远程--->点击右上角打开设置3、会弹出settings.json文件,将以下内

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W