jieba textrank关键词提取 python_教你如何使用python快速提取文章关键词(附源码)

2023-11-11 14:50

本文主要是介绍jieba textrank关键词提取 python_教你如何使用python快速提取文章关键词(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

如何给文章取一个标题,要贴近文章主题那种?如何给文章提取关键词?即使你能一目十行,过目不忘,也比不上机器“一幕十篇”。接下来介绍一个python项目,经过笔者的改造后,可以方便学习和使用,它能很好、很快地提取文章关键词。

dbc7c29bdd737f1c3401eab7215c2277.png

先喝杯咖啡,让我们开始python之旅

  • 环境配置

python版本: 3.6.0

编辑器: pycharm

项目所需要的环境安装包

pip install jiebapip install bs4
  • 代码目录结构:
60de150e8d2a62d5443b64dfae279cdb.png

第一步:导入相关的python包

# encoding:utf-8import jiebaimport jieba.analyseimport jieba.posseg as psegfrom bs4 import BeautifulSoup

jieba: 这是一个处理中文分词工具包。其实它并不是只有分词这一个功能,而是一个开源框架,提供了很多在分词之上的算法,如关键词提取、词性标注等。可以说是做人工智能一个必备的python包。

bs4: 它的作用是能够快速方便简单的提取网页中指定的内容,给我一个网页字符串,然后使用它的接口将网页字符串生成一个对象,然后通过这个对象的方法来提取数据。爬虫工程师会经常用到这个包,这里作为一个数据清洗的包使用。

5f8ac69346e1a541ca76afa57dba4f0d.png

第二步:参数配置类

class CONF:    stopwords_path = './data/stopwords.txt'    mydict_path = './data/mydict.txt'    top_n = 10  # 只取10个关键词

参数配置类: 文件路径、模型存放路径、模型参数统一放在一个类中。值得注意的是,实际项目开发的时候,是用后缀名为config 文本文件存放,不会直接写在代码里。这里为了演示方便,就写在一起,也方便运行。这块代码放在代码文件的开头也方便查看和修改。stopwords_path 是一个停用词库的相对路径。mydict_path 是一个词典路径,词典里主要存放一些网络名词和一些 jieba 分词识别不出的新词汇。

f966b7280f641a4ca576cb31798c4b8e.png

第三步:类的初始化

class KeyWordModel:    def __init__(self, stopwords_path, mydict_path, top_n):        self.stopwords_path = stopwords_path        self.mydict_path = mydict_path        self.top_n = top_n        # 加载停用词  特殊词典        jieba.analyse.set_stop_words(self.stopwords_path)        jieba.load_userdict(self.mydict_path)    """模型初始化"""    @classmethod    def initialize(cls, config):        stopwords_path = config.stopwords_path        mydict_path = config.mydict_path        top_n = config.top_n        return cls(stopwords_path, mydict_path, top_n)

initialize() 函数和 __init__() 函数 是对象初始化和实例化,其中包括基本参数的赋值、最后返回用户一个对象。这里作为一个类的基本操作,是属于一个通用模板,在大多数项目中,都可以这么去写。为了养成良好的编程习惯,大家可以把这个模板记下来,后续直接套用,修改部分参数就可以了。jieba.analyse.set_stop_words() jieba.load_userdict() 分别是导入停用词和导入自己构建的词汇,这里放在__init__() 函数中,类被实例化的时候,只被调用一次。

aa76182a8b45670a379617d69dbed050.png

第四步: 类的主流程函数

"""获取关键词"""def get_keyword(self, content):    text_rank_word = self.__tf_idf_key_word(content)    tf_idf_word = self.__textrank_key_word(content)    word_list = list(set(text_rank_word).union(set(tf_idf_word)))    result = self.__filter_pos_key_word(word_list, content)    return result

在写代码的时候,一定要抓住主线,就是代码运行的主流程。因为一个完整可靠的项目,它是有很多细枝末节考虑,很多步骤是要分模块来写。主流程就是把主心干确定好,各个模块的入口确定好。这样开发的时候,思路会比较清晰,不会被细节吸引住。这里主心干只有个函数 get_keyword() 的调用,其中text_rank_word tf_idf_word 分别用textranktfidf算法提取关键词,最后再用词性过滤器__filter_pos_key_word(), 提取名词关键词。

e38739a33fc427e49672037f7244be16.png

第五步: 提取关键词的三个方法

"""TF-IDF 提取top_n个关键词"""def __tf_idf_key_word(self, content):    sp = BeautifulSoup(content, "html.parser")    tags = jieba.analyse.extract_tags(sp.text, topK=self.top_n)    return tags"""TextRank 提取top_n个关键词"""def __textrank_key_word(self, content):    sp = BeautifulSoup(content, "html.parser")    tags = jieba.analyse.textrank(sp.text, topK=self.top_n)    return tags"""只获取名词"""def __filter_pos_key_word(self, tag_list, content, pos_list=['n', 'nr', 'ns', 'nt', 'nrt']):    sp = BeautifulSoup(content, "html.parser")    words = pseg.cut(sp.text)    list_tmp = []    for w in words:        word = w.word        if w.flag in pos_list and len(word) > 1 and word not in list_tmp and word in tag_list:            list_tmp.append(word)    return list_tm

TF-IDF: 这是一个常用的提取关键词算法,利用文章中词频越高重要性越高、和逆词频(该词在其他文章词频越低越能代表本文章)。

TextRank: 有点像PageRank 算法,感兴趣的朋友可以了解一下,这里不过多介绍有难度的算法。

pseg: 这是一个词性解析器,它能够分析句子中每个词语的属性,例如:名词、动词、形容词等。

21bddb24bc907e8807095426f903c17c.png

第六步: 主函数入口

f44f36a202916c35f1fa4f1cccda994a.png

最后,测试一下

用我之前写的《最近很火的文章自动生成器,python源码公开了(内附python代码)》,来生成随机一篇文章标题为《标题党》的文章,作为程序的输入,运行结果:

ebb852c112a3c10b3ba1784748b65876.png

关键词: ['标题党', '事实', '缺点', '深思', '角度', '能力', '梦想']


如果有疑问想获取源码, 可以在后台私信我,回复:python关键词。 我把源码发你。最后,感谢大家的阅读,祝大家工作生活愉快!

这篇关于jieba textrank关键词提取 python_教你如何使用python快速提取文章关键词(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390826

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更