jieba textrank关键词提取 python_教你如何使用python快速提取文章关键词(附源码)

2023-11-11 14:50

本文主要是介绍jieba textrank关键词提取 python_教你如何使用python快速提取文章关键词(附源码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

如何给文章取一个标题,要贴近文章主题那种?如何给文章提取关键词?即使你能一目十行,过目不忘,也比不上机器“一幕十篇”。接下来介绍一个python项目,经过笔者的改造后,可以方便学习和使用,它能很好、很快地提取文章关键词。

dbc7c29bdd737f1c3401eab7215c2277.png

先喝杯咖啡,让我们开始python之旅

  • 环境配置

python版本: 3.6.0

编辑器: pycharm

项目所需要的环境安装包

pip install jiebapip install bs4
  • 代码目录结构:
60de150e8d2a62d5443b64dfae279cdb.png

第一步:导入相关的python包

# encoding:utf-8import jiebaimport jieba.analyseimport jieba.posseg as psegfrom bs4 import BeautifulSoup

jieba: 这是一个处理中文分词工具包。其实它并不是只有分词这一个功能,而是一个开源框架,提供了很多在分词之上的算法,如关键词提取、词性标注等。可以说是做人工智能一个必备的python包。

bs4: 它的作用是能够快速方便简单的提取网页中指定的内容,给我一个网页字符串,然后使用它的接口将网页字符串生成一个对象,然后通过这个对象的方法来提取数据。爬虫工程师会经常用到这个包,这里作为一个数据清洗的包使用。

5f8ac69346e1a541ca76afa57dba4f0d.png

第二步:参数配置类

class CONF:    stopwords_path = './data/stopwords.txt'    mydict_path = './data/mydict.txt'    top_n = 10  # 只取10个关键词

参数配置类: 文件路径、模型存放路径、模型参数统一放在一个类中。值得注意的是,实际项目开发的时候,是用后缀名为config 文本文件存放,不会直接写在代码里。这里为了演示方便,就写在一起,也方便运行。这块代码放在代码文件的开头也方便查看和修改。stopwords_path 是一个停用词库的相对路径。mydict_path 是一个词典路径,词典里主要存放一些网络名词和一些 jieba 分词识别不出的新词汇。

f966b7280f641a4ca576cb31798c4b8e.png

第三步:类的初始化

class KeyWordModel:    def __init__(self, stopwords_path, mydict_path, top_n):        self.stopwords_path = stopwords_path        self.mydict_path = mydict_path        self.top_n = top_n        # 加载停用词  特殊词典        jieba.analyse.set_stop_words(self.stopwords_path)        jieba.load_userdict(self.mydict_path)    """模型初始化"""    @classmethod    def initialize(cls, config):        stopwords_path = config.stopwords_path        mydict_path = config.mydict_path        top_n = config.top_n        return cls(stopwords_path, mydict_path, top_n)

initialize() 函数和 __init__() 函数 是对象初始化和实例化,其中包括基本参数的赋值、最后返回用户一个对象。这里作为一个类的基本操作,是属于一个通用模板,在大多数项目中,都可以这么去写。为了养成良好的编程习惯,大家可以把这个模板记下来,后续直接套用,修改部分参数就可以了。jieba.analyse.set_stop_words() jieba.load_userdict() 分别是导入停用词和导入自己构建的词汇,这里放在__init__() 函数中,类被实例化的时候,只被调用一次。

aa76182a8b45670a379617d69dbed050.png

第四步: 类的主流程函数

"""获取关键词"""def get_keyword(self, content):    text_rank_word = self.__tf_idf_key_word(content)    tf_idf_word = self.__textrank_key_word(content)    word_list = list(set(text_rank_word).union(set(tf_idf_word)))    result = self.__filter_pos_key_word(word_list, content)    return result

在写代码的时候,一定要抓住主线,就是代码运行的主流程。因为一个完整可靠的项目,它是有很多细枝末节考虑,很多步骤是要分模块来写。主流程就是把主心干确定好,各个模块的入口确定好。这样开发的时候,思路会比较清晰,不会被细节吸引住。这里主心干只有个函数 get_keyword() 的调用,其中text_rank_word tf_idf_word 分别用textranktfidf算法提取关键词,最后再用词性过滤器__filter_pos_key_word(), 提取名词关键词。

e38739a33fc427e49672037f7244be16.png

第五步: 提取关键词的三个方法

"""TF-IDF 提取top_n个关键词"""def __tf_idf_key_word(self, content):    sp = BeautifulSoup(content, "html.parser")    tags = jieba.analyse.extract_tags(sp.text, topK=self.top_n)    return tags"""TextRank 提取top_n个关键词"""def __textrank_key_word(self, content):    sp = BeautifulSoup(content, "html.parser")    tags = jieba.analyse.textrank(sp.text, topK=self.top_n)    return tags"""只获取名词"""def __filter_pos_key_word(self, tag_list, content, pos_list=['n', 'nr', 'ns', 'nt', 'nrt']):    sp = BeautifulSoup(content, "html.parser")    words = pseg.cut(sp.text)    list_tmp = []    for w in words:        word = w.word        if w.flag in pos_list and len(word) > 1 and word not in list_tmp and word in tag_list:            list_tmp.append(word)    return list_tm

TF-IDF: 这是一个常用的提取关键词算法,利用文章中词频越高重要性越高、和逆词频(该词在其他文章词频越低越能代表本文章)。

TextRank: 有点像PageRank 算法,感兴趣的朋友可以了解一下,这里不过多介绍有难度的算法。

pseg: 这是一个词性解析器,它能够分析句子中每个词语的属性,例如:名词、动词、形容词等。

21bddb24bc907e8807095426f903c17c.png

第六步: 主函数入口

f44f36a202916c35f1fa4f1cccda994a.png

最后,测试一下

用我之前写的《最近很火的文章自动生成器,python源码公开了(内附python代码)》,来生成随机一篇文章标题为《标题党》的文章,作为程序的输入,运行结果:

ebb852c112a3c10b3ba1784748b65876.png

关键词: ['标题党', '事实', '缺点', '深思', '角度', '能力', '梦想']


如果有疑问想获取源码, 可以在后台私信我,回复:python关键词。 我把源码发你。最后,感谢大家的阅读,祝大家工作生活愉快!

这篇关于jieba textrank关键词提取 python_教你如何使用python快速提取文章关键词(附源码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/390826

相关文章

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

go中空接口的具体使用

《go中空接口的具体使用》空接口是一种特殊的接口类型,它不包含任何方法,本文主要介绍了go中空接口的具体使用,具有一定的参考价值,感兴趣的可以了解一下... 目录接口-空接口1. 什么是空接口?2. 如何使用空接口?第一,第二,第三,3. 空接口几个要注意的坑坑1:坑2:坑3:接口-空接口1. 什么是空接

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建