PointCleanNet: 一种基于数据驱动的点云去噪方法

2023-11-11 11:51

本文主要是介绍PointCleanNet: 一种基于数据驱动的点云去噪方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近投文章,不止一个审稿人向我推荐了PointCleanNet用于稠密点云去噪。查了一下,是Ovsjanikov教授挂名的文章,发表在CGF上。高手背书,果断决定研究一下。

1. 介绍

点云去噪是一个老问题了,一般主要是针对高斯噪声和异常点(Outliers)进行去噪,经典的方法包括双线性,高斯核以及MLS曲面重映射等方法。作者在PointCleanNet中,提出了一些关于点云去噪的一些细节问题,如下:

1)平衡去噪与特征保护;2)自适应;3)对无序点云与刚性变换鲁棒;4)不干扰非噪声点。

这里给出我个人的解释,一般在点云去噪中,为了追求点云的连续性,通常都会采取平滑算法。可想而知,一些重要的几何特征,如锐利的边界以及几何纹理细节会被平滑掉。这是我们不希望发生的。因此,去噪需要在平滑与特征保持中建立平衡。自适应,意思是不希望有过多的人为输入。因为一些经典算法都要求用户输入搜索半径等参数,而这些参数对结果又会有很大影响,同时用户又不太清楚如何输入较好的参数,所以导致基于参数的算法实用性一般。自适应就是要解决这个问题。无序与刚性变换鲁棒比较容易理解,就是对同一个点云,变换点的顺序与对点云进行平移旋转,去噪结果一致。最有一点,不干扰非噪声点,就是说点云需要在尽可能保持原始信息的基础上去噪,否则就是输出一个和原来模型不一致的所谓理想结果,自己逗自己玩。

为了解决这些问题,作者提出了PointCleanNet。该网络基于PCPNet architecture [1] 来估计局部几何特征,并根据该特征实现去噪。通过对一组包括了噪声的点云块集合进行训练,得到PointCleanNet,即首先去除Outliers,然后估计留下的点的校正向量。

2. 问题建模

假设带噪声点云表示如下:

P‘为输入点云;我们希望恢复噪声点的位置并去除Outlier, 于是我们建立校正向量的表示

 d为校正向量,p_i^'为消除了Outlier的点。

PointCleanNet的目标就是消除Outlier并且获得对校正向量的估计。基本上这是一个局部估计的问题,校正向量要与点云的邻域结果报纸一致,以获得平滑的曲面。PCPNet能够用来计算一个点云的邻域结构的几何特征。

 使用一个非线性函数g来估计输入点是outlier的概率: 

o^{~}_i是outliers的判断概率,当大于0.5时,即判断输入点为outlier。

使用一个函数f来估计校正向量d

建立局部块local patch:建立一个类似于ball space的空间,来搜索附近的区域,以获得outlier的概率;使用spatial transformer network(quaternion spatial transformer network:QSTN)[2] 来去除旋转影响;

Loss function: 基本上就是点的欧氏距离,也可以是Hausdorff距离。

3. 程序调试

首先下载源代码,作者已经提供了项目链接:GitHub - mrakotosaon/pointcleannet

配置,我是在pycharm上配置的,需要安装的包包括cudatoolkit,cudnn,pytorch,numpy,script,tensorboardx,请按照版本需求安装。

程序的使用:

首先,下载训练数据,使用download_data.py

之后,训练,使用train_pcpnet.py

按照要求,在项目根目录中创建一个文件夹,存储输出的去噪结果

最后,运行run.sh (如果是windows平台,需要安装shell执行应用。我没有搞定,就直接把sh里的命令在命令行模式里输入的,总共三条语句,即对点云进行的三次迭代。)

我对python的点云项目不太熟,应该是可以把这个程序重新改一下,不需要这么麻烦,熟悉python点云项目的兄弟有空可以优化一下: 

论文中的一些去噪的实验结果: 

我用自己的数据跑出来的一些结果:(有效果,但是确实一般。事实上,依靠局部邻域的patch去建立源输入,还是不能彻底解决过于离散的outlier的情况。不过,肯定比传统方法要好一点。)

 

[1] GUERRERO P, et al. PCPNet: Learning local shape properties from raw point clouds.CGF 37, 2 (2018), 75–85.

[2] JADERBERG M, et al. Spatial transformer networks. In NIPS (2015), pp. 2017–2025.

这篇关于PointCleanNet: 一种基于数据驱动的点云去噪方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389870

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

macOS无效Launchpad图标轻松删除的4 种实用方法

《macOS无效Launchpad图标轻松删除的4种实用方法》mac中不在appstore上下载的应用经常在删除后它的图标还残留在launchpad中,并且长按图标也不会出现删除符号,下面解决这个问... 在 MACOS 上,Launchpad(也就是「启动台」)是一个便捷的 App 启动工具。但有时候,应

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp