机器人入门(五)—— 仿真环境中操作TurtleBot

2023-11-11 10:45

本文主要是介绍机器人入门(五)—— 仿真环境中操作TurtleBot,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

仿真环境中操作TurtleBot

  • 一、实操
    • 1.1 查看姿态信息
    • 1.2 控制turtlebot移动的三种方式
      • 1.2.1 命令行发布指令
      • 1.2.2 键盘操控
      • 1.2.3 Python脚本控制
      • 1.2.4 使用rqt工具界面,发布运动指令
  • 二、里程计(odometry)
  • TurtleBot3 仿真

进行实操之前,先准备环境

$ sudo apt install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator ros-kinetic-kobuki-ftdi ros-kinetic-turtlebot-gazebo

一、实操

1.1 查看姿态信息

环境准备好后,执行以下命令启动

$ roslaunch turtlebot_gazebo turtlebot_world.launch

可以看见以下效果,视角不舒服的话,就按Ctrl+Shift+鼠标左键调整调整至你喜欢的视角,并通过滚轮缩放大小。
在这里插入图片描述在这里插入图片描述
按如下顺序点击,TurtleBot将被一个白色框线框住,并可以查看姿态信息

在这里插入图片描述

也可以用以下命令,打印出mobile_base的姿态信息,注意到,由于车应该是放置在水平面上的,position.z的值本应该是0,这里却是一串-0.00113074128666的小数,原因是什么呢?是ROS的缺陷吗?//@TODO,此问题待解答,然后看到orientation的x,y,z,w,这被称作四元数(quaternion),用来表示三维空间里的旋转,关于四元数如何表示三维空间里的旋转,见《二维空间与三维空间的姿态表示法》

$ rosservice call gazebo/get_model_state '{model_name: mobile_base}'
header: seq: 1stamp: secs: 1945nsecs: 170000000frame_id: ''
pose: position: x: 1.97484093771y: 0.0147819206239z: -0.00113074128666orientation: x: -0.00134519341326y: -0.00376571136568z: -0.348703846748w: 0.937224432639
twist: linear: x: -0.000155242355429y: -0.000224370086231z: -4.28258194336e-06angular: x: -0.0023805996017y: 0.00191483013878z: 0.000121453647707
success: True
status_message: "GetModelState: got properties"

1.2 控制turtlebot移动的三种方式

1.2.1 命令行发布指令

可以看到,这个名字叫做mobile_base的link(连接刚体),根据之前操作小乌龟的文章,我们要先找到有哪些node在跑,然后再找到对应的有哪些topic在publish和被subscribe,去控制mobile_base,开始,我们干脆看图说话。

rosrun rqt_graph rqt_graph

在这里插入图片描述目的很明确,要找的node就应该是/gazebo了,我原本以为,这里会有一个结点应该叫mobile_base,但想了想,它应该被整个包含在/gazebonode环境里面了,所以/gazebo这个node还是有非常多子结构,不然一个孤零零的/gazebo,怎么完成这么多物体的操作呢?

$ rosnode list
/gazebo #忽略
/gazebo_gui #忽略
/laserscan_nodelet_manager
/mobile_base_nodelet_manager #可能是
/robot_state_publisher 
/rosout #忽略

继续,信息有点多,但是我们还是只需要看Subscriptions这个,服从命令听指挥是优良作风,看名字的话,在上面rqt_graph图中所见到的的topic正是/mobile_base/commands/velocity,哦这里连message的数据类型都给出来了是geometry_msgs/Twist

$ rosnode info /gazebo
--------------------------------------------------------------------------------
Node [/gazebo]
Publications: * /camera/depth/camera_info [sensor_msgs/CameraInfo]* /camera/depth/image_raw [sensor_msgs/Image]
...
...Subscriptions: * /clock [rosgraph_msgs/Clock]* /gazebo/set_link_state [unknown type]* /gazebo/set_model_state [unknown type]* /mobile_base/commands/motor_power [unknown type]* /mobile_base/commands/reset_odometry [unknown type]* /mobile_base/commands/velocity [geometry_msgs/Twist]
...
...

那么就有的放矢了,发布命令

$ rostopic pub -r 10 /mobile_base/commands/velocity /geometry_msgs/Twist '{linear: {x: 0.2}}'

在这里插入图片描述

1.2.2 键盘操控

执行下面的命令,可以用键盘操作

$ roslaunch turtlebot_teleop keyboard_teleop.launch

在这里插入图片描述在这里插入图片描述但这个package是turtlebot_teleop有什么说法和依据吗?为什么执行的是它,答案是没有,代码开发时的设计如此,来看最新的rqt_graph,所以这建立在你非常了解你所要运行的仿真环境基础上,才能做到用键盘操作,不然琢磨半天也不会知道如何使用键盘去操作这个turtlebot。
在这里插入图片描述

1.2.3 Python脚本控制

西天取经,孙悟空总算是要拿到他的如意金箍棒了,有了程序,才叫编程,有了金箍棒,孙悟空才能大闹天宫,可孙悟空终会有取到经书的一刻,那时,不只是涅盘成佛,也是大圣的寂灭。
创建一份ControlTurtleBot.py,内容为:

#!/usr/bin/env python
# Execute as a python script  
# Set linear and angular values of TurtleBot's speed and turning.
import rospy      # Needed to create a ROS node
from geometry_msgs.msg import Twist    # Message that moves baseclass ControlTurtleBot():def __init__(self):# ControlTurtleBot is the name of the node sent to the #masterrospy.init_node('ControlTurtleBot', anonymous=False)# Message to screenrospy.loginfo("Press CTRL+c to stop TurtleBot")# Keys CNTL + c will stop script #这里的self.shutdown是一个函数地址rospy.on_shutdown(self.shutdown)# Publisher will send Twist message on topic cmd_vel_mux/input/naviself.cmd_vel = rospy.Publisher('cmd_vel_mux/input/navi',Twist, queue_size=10)# TurtleBot will receive the message 10 times per second.rate = rospy.Rate(10);# 10 Hz is fine as long as the processing does not exceed#   1/10 second.# Twist is geometry_msgs for linear and angular velocitymove_cmd = Twist()move_cmd.linear.x = 0.3# Modify this value to change speed# Turn at 0 radians/smove_cmd.angular.z = 0# Modify this value to cause rotation rad/s# Loop and TurtleBot will move until you type CNTL+cwhile not rospy.is_shutdown():# publish Twist values to TurtleBot node /cmd_vel_muxself.cmd_vel.publish(move_cmd)# wait for 0.1 seconds (10 HZ) and publish againrate.sleep()def shutdown(self):# You can stop turtlebot by publishing an empty Twist# messagerospy.loginfo("Stopping TurtleBot")self.cmd_vel.publish(Twist())# Give TurtleBot time to stoprospy.sleep(1)if __name__ == '__main__':try:ControlTurtleBot()except:rospy.loginfo("End of the trip for TurtleBot")

然后赋予执行权限,并用python解释执行,然后小车就会沿着它自身坐标系的x轴方向一直前进。

$ chmod +x ControlTurtleBot.py
$ python ControlTurtleBot.py

1.2.4 使用rqt工具界面,发布运动指令

rqt = ROS Qt GUI Toolkit,

$ rqt

然后在插件选项栏里,将Message PublisherTopic Monitor调出来

在这里插入图片描述并选择对应的Topic和Message Type,设置数据值,然后勾选发布
在这里插入图片描述另外rqt这个工具可以让你跟踪发布的message,一旦TurtleBot的行动不是你预期的那样,你可以进行debug排查原因。

二、里程计(odometry)

这个odometry是用来估计mobile robot当前所处位置,和起点之间的距离和姿态变化,当mobile robot走了一段较长的距离时,这个数据会变得不准,原因可能是车轮的直径参数有误,或者路不平导致车轮的转换器输出了不准确的数据,书上给了一篇IEEE Transactions on Robotics and Automation(IEEE TRO)收录的论文,对这个问题有较为详尽的讨论 Measurement and Correction of Systematic Odometry Errors in Mobile Robots.pdf,这篇文章还讨论了轴距(wheelbase)的影响。
这是一作老头子的个人主页 Johann Borenstein

首先,查看/odom这个topic使用的message,结果显示是nav_msgs/Odometry,再看nav_msgs/Odometry的数据格式

$ rostopic type /odom
nav_msgs/Odometry
$ rosmsg show nav_msgs/Odometry
std_msgs/Header headeruint32 seqtime stampstring frame_id
string child_frame_id
geometry_msgs/PoseWithCovariance posegeometry_msgs/Pose posegeometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 wfloat64[36] covariance
geometry_msgs/TwistWithCovariance twistgeometry_msgs/Twist twistgeometry_msgs/Vector3 linearfloat64 xfloat64 yfloat64 zgeometry_msgs/Vector3 angularfloat64 xfloat64 yfloat64 zfloat64[36] covariance

用以下命令可以使turtlebot归位

# 1.查找归位topic对应的message
$ rostopic type /mobile_base/commands/reset_odometry 
std_msgs/Empty
# 2.命令mobile_base归位
$ rostopic pub /mobile_base/commands/reset_odometry std_msgs/Empty
$ rostopic echo /mobile_base/sensors/imu_data

使用以下命令,分别把gazebo和rviz启动起来

$ roslaunch turtlebot_gazebo turtlebot_world.launch
$ roslaunch turtlebot_rviz_launchers view_robot.launch

按如下方式勾选
在这里插入图片描述就会出现一根红色箭头,将指明turtlebot的前进方向

在这里插入图片描述然后发布运动命令

$ rostopic pub -r 10 /cmd_vel_mux/input/teleop \geometry_msgs/Twist '{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'
# 效果与上面的一样,
$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist '{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

TurtleBot3 仿真

安装环境

$ sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy ros-kinetic-teleop-twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbd-launch ros-kinetic-depthimage-to-laserscan ros-kinetic-rosserial-arduino ros-kinetic-rosserial-python ros-kinetic-rosserial-server ros-kinetic-rosserial-client ros-kinetic-rosserial-msgs ros-kinetic-amcl ros-kinetic-map-server ros-kinetic-move-base ros-kinetic-urdf ros-kinetic-xacro ros-kinetic-compressed-image-transport ros-kinetic-rqt-image-view ros-kinetic-gmapping ros-kinetic-navigation

然后将给turtlebot3远程计算机开发的ROS catkin 软件包代码拉到本地,并进行编译

$ cd ~/catkin_ws/src/
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.git
$ cd ~/catkin_ws
$ catkin_make

用以下命令,去指定model,这样再启动rviz环境下看到的就是burger这个机器人,TurtleBot 3 Burger [US]

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_fake turtlebot3_fake.launch

然后在新的Terminal,就可以用键盘控制这个机器人了

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

在这里插入图片描述

关闭刚刚打开rviz的终端,然后是gazebo环境的仿真,你应该会看到如下画面

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

在这里插入图片描述然后再打开一个Terminal,执行下面的命令,你就能操控turtlebot3在这个仿真环境里行驶了

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

在这里插入图片描述
并且turtlebot3还可以自动行驶,关掉执行turtlebot3_teleop的终端,在新的Terminal里执行下面的命令

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

在这里插入图片描述
来看下为什么turtlebot3不撞墙,新建一个Terminal并执行

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

发现有激光雷达的扫描数据,红点连起来就是激光雷达的描边
在这里插入图片描述书本的第三章后半部分就在写硬件部分的实操了,第三章就到这里

这篇关于机器人入门(五)—— 仿真环境中操作TurtleBot的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389504

相关文章

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

使用JavaScript操作本地存储

《使用JavaScript操作本地存储》这篇文章主要为大家详细介绍了JavaScript中操作本地存储的相关知识,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录本地存储:localStorage 和 sessionStorage基本使用方法1. localStorage

使用JavaScript将PDF页面中的标注扁平化的操作指南

《使用JavaScript将PDF页面中的标注扁平化的操作指南》扁平化(flatten)操作可以将标注作为矢量图形包含在PDF页面的内容中,使其不可编辑,DynamsoftDocumentViewer... 目录使用Dynamsoft Document Viewer打开一个PDF文件并启用标注添加功能扁平化

JavaScript DOM操作与事件处理方法

《JavaScriptDOM操作与事件处理方法》本文通过一系列代码片段,详细介绍了如何使用JavaScript进行DOM操作、事件处理、属性操作、内容操作、尺寸和位置获取,以及实现简单的动画效果,涵... 目录前言1. 类名操作代码片段代码解析2. 属性操作代码片段代码解析3. 内容操作代码片段代码解析4.

SpringBoot使用Apache POI库读取Excel文件的操作详解

《SpringBoot使用ApachePOI库读取Excel文件的操作详解》在日常开发中,我们经常需要处理Excel文件中的数据,无论是从数据库导入数据、处理数据报表,还是批量生成数据,都可能会遇到... 目录项目背景依赖导入读取Excel模板的实现代码实现代码解析ExcelDemoInfoDTO 数据传输

Python使用asyncio实现异步操作的示例

《Python使用asyncio实现异步操作的示例》本文主要介绍了Python使用asyncio实现异步操作的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录1. 基础概念2. 实现异步 I/O 的步骤2.1 定义异步函数2.2 使用 await 等待异

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo