机器人入门(五)—— 仿真环境中操作TurtleBot

2023-11-11 10:28

本文主要是介绍机器人入门(五)—— 仿真环境中操作TurtleBot,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

仿真环境中操作TurtleBot

  • 一、实操
    • 1.1 查看姿态信息
    • 1.2 控制turtlebot移动的三种方式
      • 1.2.1 命令行发布指令
      • 1.2.2 键盘操控
      • 1.2.3 Python脚本控制
      • 1.2.4 使用rqt工具界面,发布运动指令
  • 二、里程计(odometry)
  • TurtleBot3 仿真

进行实操之前,先准备环境

$ sudo apt install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator ros-kinetic-kobuki-ftdi ros-kinetic-turtlebot-gazebo

一、实操

1.1 查看姿态信息

环境准备好后,执行以下命令启动

$ roslaunch turtlebot_gazebo turtlebot_world.launch

可以看见以下效果,视角不舒服的话,就按Ctrl+Shift+鼠标左键调整调整至你喜欢的视角,并通过滚轮缩放大小。
在这里插入图片描述在这里插入图片描述
按如下顺序点击,TurtleBot将被一个白色框线框住,并可以查看姿态信息

在这里插入图片描述

也可以用以下命令,打印出mobile_base的姿态信息,注意到,由于车应该是放置在水平面上的,position.z的值本应该是0,这里却是一串-0.00113074128666的小数,原因是什么呢?是ROS的缺陷吗?//@TODO,此问题待解答,然后看到orientation的x,y,z,w,这被称作四元数(quaternion),用来表示三维空间里的旋转,关于四元数如何表示三维空间里的旋转,见《二维空间与三维空间的姿态表示法》

$ rosservice call gazebo/get_model_state '{model_name: mobile_base}'
header: seq: 1stamp: secs: 1945nsecs: 170000000frame_id: ''
pose: position: x: 1.97484093771y: 0.0147819206239z: -0.00113074128666orientation: x: -0.00134519341326y: -0.00376571136568z: -0.348703846748w: 0.937224432639
twist: linear: x: -0.000155242355429y: -0.000224370086231z: -4.28258194336e-06angular: x: -0.0023805996017y: 0.00191483013878z: 0.000121453647707
success: True
status_message: "GetModelState: got properties"

1.2 控制turtlebot移动的三种方式

1.2.1 命令行发布指令

可以看到,这个名字叫做mobile_base的link(连接刚体),根据之前操作小乌龟的文章,我们要先找到有哪些node在跑,然后再找到对应的有哪些topic在publish和被subscribe,去控制mobile_base,开始,我们干脆看图说话。

rosrun rqt_graph rqt_graph

在这里插入图片描述目的很明确,要找的node就应该是/gazebo了,我原本以为,这里会有一个结点应该叫mobile_base,但想了想,它应该被整个包含在/gazebonode环境里面了,所以/gazebo这个node还是有非常多子结构,不然一个孤零零的/gazebo,怎么完成这么多物体的操作呢?

$ rosnode list
/gazebo #忽略
/gazebo_gui #忽略
/laserscan_nodelet_manager
/mobile_base_nodelet_manager #可能是
/robot_state_publisher 
/rosout #忽略

继续,信息有点多,但是我们还是只需要看Subscriptions这个,服从命令听指挥是优良作风,看名字的话,在上面rqt_graph图中所见到的的topic正是/mobile_base/commands/velocity,哦这里连message的数据类型都给出来了是geometry_msgs/Twist

$ rosnode info /gazebo
--------------------------------------------------------------------------------
Node [/gazebo]
Publications: * /camera/depth/camera_info [sensor_msgs/CameraInfo]* /camera/depth/image_raw [sensor_msgs/Image]
...
...Subscriptions: * /clock [rosgraph_msgs/Clock]* /gazebo/set_link_state [unknown type]* /gazebo/set_model_state [unknown type]* /mobile_base/commands/motor_power [unknown type]* /mobile_base/commands/reset_odometry [unknown type]* /mobile_base/commands/velocity [geometry_msgs/Twist]
...
...

那么就有的放矢了,发布命令

$ rostopic pub -r 10 /mobile_base/commands/velocity /geometry_msgs/Twist '{linear: {x: 0.2}}'

在这里插入图片描述

1.2.2 键盘操控

执行下面的命令,可以用键盘操作

$ roslaunch turtlebot_teleop keyboard_teleop.launch

在这里插入图片描述在这里插入图片描述但这个package是turtlebot_teleop有什么说法和依据吗?为什么执行的是它,答案是没有,代码开发时的设计如此,来看最新的rqt_graph,所以这建立在你非常了解你所要运行的仿真环境基础上,才能做到用键盘操作,不然琢磨半天也不会知道如何使用键盘去操作这个turtlebot。
在这里插入图片描述

1.2.3 Python脚本控制

西天取经,孙悟空总算是要拿到他的如意金箍棒了,有了程序,才叫编程,有了金箍棒,孙悟空才能大闹天宫,可孙悟空终会有取到经书的一刻,那时,不只是涅盘成佛,也是大圣的寂灭。
创建一份ControlTurtleBot.py,内容为:

#!/usr/bin/env python
# Execute as a python script  
# Set linear and angular values of TurtleBot's speed and turning.
import rospy      # Needed to create a ROS node
from geometry_msgs.msg import Twist    # Message that moves baseclass ControlTurtleBot():def __init__(self):# ControlTurtleBot is the name of the node sent to the #masterrospy.init_node('ControlTurtleBot', anonymous=False)# Message to screenrospy.loginfo("Press CTRL+c to stop TurtleBot")# Keys CNTL + c will stop script #这里的self.shutdown是一个函数地址rospy.on_shutdown(self.shutdown)# Publisher will send Twist message on topic cmd_vel_mux/input/naviself.cmd_vel = rospy.Publisher('cmd_vel_mux/input/navi',Twist, queue_size=10)# TurtleBot will receive the message 10 times per second.rate = rospy.Rate(10);# 10 Hz is fine as long as the processing does not exceed#   1/10 second.# Twist is geometry_msgs for linear and angular velocitymove_cmd = Twist()move_cmd.linear.x = 0.3# Modify this value to change speed# Turn at 0 radians/smove_cmd.angular.z = 0# Modify this value to cause rotation rad/s# Loop and TurtleBot will move until you type CNTL+cwhile not rospy.is_shutdown():# publish Twist values to TurtleBot node /cmd_vel_muxself.cmd_vel.publish(move_cmd)# wait for 0.1 seconds (10 HZ) and publish againrate.sleep()def shutdown(self):# You can stop turtlebot by publishing an empty Twist# messagerospy.loginfo("Stopping TurtleBot")self.cmd_vel.publish(Twist())# Give TurtleBot time to stoprospy.sleep(1)if __name__ == '__main__':try:ControlTurtleBot()except:rospy.loginfo("End of the trip for TurtleBot")

然后赋予执行权限,并用python解释执行,然后小车就会沿着它自身坐标系的x轴方向一直前进。

$ chmod +x ControlTurtleBot.py
$ python ControlTurtleBot.py

1.2.4 使用rqt工具界面,发布运动指令

rqt = ROS Qt GUI Toolkit,

$ rqt

然后在插件选项栏里,将Message PublisherTopic Monitor调出来

在这里插入图片描述并选择对应的Topic和Message Type,设置数据值,然后勾选发布
在这里插入图片描述另外rqt这个工具可以让你跟踪发布的message,一旦TurtleBot的行动不是你预期的那样,你可以进行debug排查原因。

二、里程计(odometry)

这个odometry是用来估计mobile robot当前所处位置,和起点之间的距离和姿态变化,当mobile robot走了一段较长的距离时,这个数据会变得不准,原因可能是车轮的直径参数有误,或者路不平导致车轮的转换器输出了不准确的数据,书上给了一篇IEEE Transactions on Robotics and Automation(IEEE TRO)收录的论文,对这个问题有较为详尽的讨论 Measurement and Correction of Systematic Odometry Errors in Mobile Robots.pdf,这篇文章还讨论了轴距(wheelbase)的影响。
这是一作老头子的个人主页 Johann Borenstein

首先,查看/odom这个topic使用的message,结果显示是nav_msgs/Odometry,再看nav_msgs/Odometry的数据格式

$ rostopic type /odom
nav_msgs/Odometry
$ rosmsg show nav_msgs/Odometry
std_msgs/Header headeruint32 seqtime stampstring frame_id
string child_frame_id
geometry_msgs/PoseWithCovariance posegeometry_msgs/Pose posegeometry_msgs/Point positionfloat64 xfloat64 yfloat64 zgeometry_msgs/Quaternion orientationfloat64 xfloat64 yfloat64 zfloat64 wfloat64[36] covariance
geometry_msgs/TwistWithCovariance twistgeometry_msgs/Twist twistgeometry_msgs/Vector3 linearfloat64 xfloat64 yfloat64 zgeometry_msgs/Vector3 angularfloat64 xfloat64 yfloat64 zfloat64[36] covariance

用以下命令可以使turtlebot归位

# 1.查找归位topic对应的message
$ rostopic type /mobile_base/commands/reset_odometry 
std_msgs/Empty
# 2.命令mobile_base归位
$ rostopic pub /mobile_base/commands/reset_odometry std_msgs/Empty
$ rostopic echo /mobile_base/sensors/imu_data

使用以下命令,分别把gazebo和rviz启动起来

$ roslaunch turtlebot_gazebo turtlebot_world.launch
$ roslaunch turtlebot_rviz_launchers view_robot.launch

按如下方式勾选
在这里插入图片描述就会出现一根红色箭头,将指明turtlebot的前进方向

在这里插入图片描述然后发布运动命令

$ rostopic pub -r 10 /cmd_vel_mux/input/teleop \geometry_msgs/Twist '{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'
# 效果与上面的一样,
$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist '{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

TurtleBot3 仿真

安装环境

$ sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy ros-kinetic-teleop-twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbd-launch ros-kinetic-depthimage-to-laserscan ros-kinetic-rosserial-arduino ros-kinetic-rosserial-python ros-kinetic-rosserial-server ros-kinetic-rosserial-client ros-kinetic-rosserial-msgs ros-kinetic-amcl ros-kinetic-map-server ros-kinetic-move-base ros-kinetic-urdf ros-kinetic-xacro ros-kinetic-compressed-image-transport ros-kinetic-rqt-image-view ros-kinetic-gmapping ros-kinetic-navigation

然后将给turtlebot3远程计算机开发的ROS catkin 软件包代码拉到本地,并进行编译

$ cd ~/catkin_ws/src/
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git
$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.git
$ cd ~/catkin_ws
$ catkin_make

用以下命令,去指定model,这样再启动rviz环境下看到的就是burger这个机器人,TurtleBot 3 Burger [US]

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_fake turtlebot3_fake.launch

然后在新的Terminal,就可以用键盘控制这个机器人了

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

在这里插入图片描述

关闭刚刚打开rviz的终端,然后是gazebo环境的仿真,你应该会看到如下画面

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

在这里插入图片描述然后再打开一个Terminal,执行下面的命令,你就能操控turtlebot3在这个仿真环境里行驶了

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

在这里插入图片描述
并且turtlebot3还可以自动行驶,关掉执行turtlebot3_teleop的终端,在新的Terminal里执行下面的命令

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

在这里插入图片描述
来看下为什么turtlebot3不撞墙,新建一个Terminal并执行

$ export TURTLEBOT3_MODEL=burger
$ roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

发现有激光雷达的扫描数据,红点连起来就是激光雷达的描边
在这里插入图片描述书本的第三章后半部分就在写硬件部分的实操了,第三章就到这里

这篇关于机器人入门(五)—— 仿真环境中操作TurtleBot的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389399

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.