非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc

本文主要是介绍非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

#本数据纯属虚构,如有雷同实属巧合

本次拜读的是:

 

目录

创建

读取

 使用loc索引读取dataframe:

使用iloc读取数据表格dataframe


""" dataframe是python数据分析基础中的核心, 这位按字面意义可理解为数据表格、数据框架, 她跟excel的table很相似, 由三部分组成: 行索引,称为index; 列索引,称为column; 数据内容。 她的每一列都是一个series对象。 """

创建

使用字典创建dataframe,并设置索引号

import pandas as pd #导入pandas库,缩写为pd
print("\n使用字典创建dataframe,并设置索引号:")
characters01 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,"num5","第6",7,8,9])
print(characters01)

 

索引index的结果对应第一列,如果不设置index的参数,默认使用整数类型
print("\n\n索引index的结果对应第一列,如果不设置index的参数,默认使用整数类型:")
characters02 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
})
print(characters02)

 

可以使用columns参数定义列名
print("\n\n可以使用columns参数定义列名:")
characters03 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,"num5","第6",7,8,9], columns=["score", "name", "age", "newcol"])
print(characters03)

 

如果某一字段没有数据会自动变成NaN
print("\n\n如果某一字段没有数据会自动变成NaN:")
gdp = pd.DataFrame({'2018': {'GDP': "1%", '人口': 3},'2019': {'GDP': "3%", '人口': 2},'2020': {'GDP': "2%", '人口': 1},'2021': {'人口': 1},'2022': {'GDP': "4%"}
})
print(gdp)

 

实现多层嵌套索引
print("\n\n实现多层嵌套索引:")
values = [[10, "A"], [11, "B"],  [13, "C"], [10, "D"],  [12, "E"], [12, "F"],
]
salesData = pd.DataFrame(values, columns=["销量", "型号"], index=[["一月", "一月", "二月", "二月", "三月", "三月"],["huawei", "apple", "huawei", "apple", "huawei", "apple"],
])
print(salesData)

 

通过元组直接实现MultiIndex多层嵌套索引
print("\n\n通过元组直接实现MultiIndex多层嵌套索引:")
index = pd.MultiIndex.from_tuples([('f', 1), ('f', 2), ('w', 2)], names=['e', 'c'])
df01 = pd.DataFrame({"a01": [400, 500, 600],"b02": [702, 805, 903],"c03": [101, 110, 120]
}, index=index)
print(df01)

 读取

使用索引读取dataframe

 

print("\n\n使用索引读取dataframe:")
characters04 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
print("\n\n读取name列:\n", characters04['name'])
print("\n\n读取name和age列:\n", characters04[['name', 'age']])
print("\n\n读取前两行的所有内容:\n", characters04[:2])
print("\n\n使用loc索引读取dataframe:")
print("\n\n使用loc索引第一行所有内容\n", characters04.loc[1])
print("\n\n使用loc索引同行多列内容\n", characters04.loc[1, ['name',  "age"]])
print("\n\n使用loc索引多行同列内容\n", characters04.loc[[1, 3], "name"])
print("\n\n使用loc索引多行多列内容\n", characters04.loc[1:2])
print("\n\n使用lambda表达式,获取索引号是偶数的行\n", characters04.loc[lambda x: x.index % 2 == 0])
print("\n\n获取年龄大于18的对应值\n", characters04.loc[lambda x: x['age'] > 18 ])
print("\n\n逗号前写筛选条件,逗号后显示对应值\n", characters04.loc[characters04['age'] > 17, 'name'])
print("\n\n逗号前写筛选条件,逗号后获取对应值的相关字段信息:\n", characters04.loc[characters04['age'] > 17, ['name', 'score']])

 

 

 使用loc索引读取dataframe:

 

 

 

 

使用loc读取多层索引dataframe
print("\n\n使用loc读取多成索引dataframe:")
salesData = pd.DataFrame([[10, "A"], [11, "B"],  [13, "C"], [10, "D"],  [12, "E"], [12, "F"],
], columns=["销量", "型号"], index=[["六月", "六月", "七月", "七月", "八月", "八月"],["huawei", "apple", "huawei", "apple", "huawei", "apple"],
])
print("\n\n输出整个表:\n",salesData)
print("\n\n输出六月相关:\n",salesData.loc['六月'])
print("\n\n输出六月huawei相关:\n",salesData.loc['六月', 'huawei'])

 

 

 

使用iloc读取数据表格dataframe

print("\n\n使用iloc读取数据表格dataframe:")
df001 = pd.DataFrame( [[39,35940,8,703], [51,45468,4,815], [84, 83694, 4, 894], [57, 46540, 2, 973], [19, 20316, 3, 436], [46, 53104, 6, 735]] ,index=list(range(0, 12, 2)), #定义显示行索引起始为0,结束为12,步长为2columns=list(range(0, 8, 2)))#定义显示列索引起始为0,结束为8,步长为2
print("\n\n输出整个表:\n",df001)
print("\n\n输出第二行,默认索引为1,显示索引为2:\n",df001.iloc[1])
print("\n\n使用切片运算输出前三行:\n",df001.iloc[:3])
print("\n\n使用切片超出范围也不会报错:\n",df001.iloc[3:100])
# print("\n\n但如果读取某个不存在的索引会报错:\n",df001.iloc[4, 8, 9])
print("\n\n选择第二行第二列的一个数据:\n",df001.iloc[1, 1])
print("\n\n连续选择第二到五行的第三到第四列的数据:\n",df001.iloc[1:5, 2:4])
print("\n\n跳选第二、四、六行的第二、四列的数据:\n",df001.iloc[[1, 3, 5], [1, 3]])
print("\n\n使用冒号表示获取一整行:\n",df001.iloc[1:3, :])
print("\n\n使用冒号表示获取一整列:\n",df001.iloc[:, 1:3])

 

 

 

 

 

使用iterrows遍历读取每一行
print("\n\n使用iterrows遍历读取每一行:")
characters05 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
for index, row in characters05.iterrows():print("索引index: {0}".format(index))print("角色{0}, 年龄{1}, 分数{2}".format(row['name'], row['age'], row['score']))

 

使用items遍历读取每一列
print("\n\n使用items遍历读取每一列:")
characters06 = pd.DataFrame({"name" : ["zhongli","yanfei", "jiangjun","tuoma","xinhai","chongyun","xingqiu","anbo","xiangling"],"age" : [17,18,19,21,29,15,19,14,17],"score" : [98780,36895,54100,20523,36895,54100,20523,36895,54100]
}, index = [1,2,3,4,5,6,7,8,9])
for label, item in characters06.items():print(label)print(item)

 

 

这篇关于非理工科编程零基础文科生秒懂python学习笔记:pandas库dataframe核心基础数据选取loc与iloc的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/389234

相关文章

如何使用C#串口通讯实现数据的发送和接收

《如何使用C#串口通讯实现数据的发送和接收》本文详细介绍了如何使用C#实现基于串口通讯的数据发送和接收,通过SerialPort类,我们可以轻松实现串口通讯,并结合事件机制实现数据的传递和处理,感兴趣... 目录1. 概述2. 关键技术点2.1 SerialPort类2.2 异步接收数据2.3 数据解析2.

详解如何使用Python提取视频文件中的音频

《详解如何使用Python提取视频文件中的音频》在多媒体处理中,有时我们需要从视频文件中提取音频,本文为大家整理了几种使用Python编程语言提取视频文件中的音频的方法,大家可以根据需要进行选择... 目录引言代码部分方法扩展引言在多媒体处理中,有时我们需要从视频文件中提取音频,以便进一步处理或分析。本文

python多种数据类型输出为Excel文件

《python多种数据类型输出为Excel文件》本文主要介绍了将Python中的列表、元组、字典和集合等数据类型输出到Excel文件中,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一.列表List二.字典dict三.集合set四.元组tuplepython中的列表、元组、字典

VSCode配置Anaconda Python环境的实现

《VSCode配置AnacondaPython环境的实现》VisualStudioCode中可以使用Anaconda环境进行Python开发,本文主要介绍了VSCode配置AnacondaPytho... 目录前言一、安装 Visual Studio Code 和 Anaconda二、创建或激活 conda

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务