换坑季-51Job前程无忧 Python爬虫

2023-11-11 07:10

本文主要是介绍换坑季-51Job前程无忧 Python爬虫,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写了个简易的Python爬虫,实现对目的工作的分析。
说明,只用了正则re库进行数据处理,requests进行请求,开了4个简易的函数线程。
url是以下界面的url:
在这里插入图片描述
主要实现了以下CSV功能:
在这里插入图片描述
全部代码:

import requests
import re
import csv
from threading import Threaddef req(i):count = 1try:for url in i:headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36'}response = requests.get(url=url, headers=headers, timeout=5)response.encoding = 'GBK'content = re.findall(r'<a target="_blank" title="(.*?)" href="(.*?)" onmousedown="">.*?<span class="t2"><a target="_blank" title="(.*?)" href=".*?">.*?</a></span>.*?<span class="t3">(.*?)</span>.*?<span class="t4">(.*?)</span>.*?<span class="t5">(.*?)</span>', response.text, re.S)# print(content)for index in content:txt = []title = index[0]thisUrl = index[1]try:thisContent = requests.get(url=thisUrl, headers=headers, timeout=5)text = re.findall(r'<div class="bmsg job_msg inbox">(.*?)<div class="mt10">', thisContent.text, re.S)final = ''.join(text).replace('\r\n\t\t\t\t\t\t', '').replace('<p>', '').replace('</p>', '').replace('<span>', '').replace('</span>', '').replace('<br>', '').replace('&nbsp;', '').replace('</div>', '').replace('<div>', '').replace('\t\t\t\t\t\t\t\t\t\t\t\t', '').replace('<b>', '').replace('</b>', '').replace('</li>', '').replace('</strong>', '').replace('<strong>', '').replace('<li>', '')company = index[2]area = index[3]salary = index[4]date = index[5]txt.append(title)txt.append(thisUrl)txt.append(final)txt.append(company)txt.append(area)txt.append(salary)txt.append(date)# print(txt)with open(r'./前程无忧.csv', 'a', newline='', encoding='utf-8-sig') as csvf:spanwriter = csv.writer(csvf)spanwriter.writerow(txt)count = count + 1except:print("此次请求详情失败!!!" + thisUrl)except:print('请求首页失败!' + i)print("共%d多少条信息~" % count)if __name__ == '__main__':txt1 = []txt2 = []txt3 = []txt4 = []url = 'https://search.51job.com/list/090200,000000,0000,00,9,99,%25E8%25BF%2590%25E7%25BB%25B4%25E5%25B7%25A5%25E7%25A8%258B%25E5%25B8%2588,2,{}.html?lang=c&stype=1&postchannel=0000&workyear=99&cotype=99&degreefrom=99&jobterm=99&companysize=99&lonlat=0%2C0&radius=-1&ord_field=0&confirmdate=9&fromType=&dibiaoid=0&address=&line=&specialarea=00&from=&welfare='for i in range(1, 6):i = url.format(i)txt1.append(i)for j in range(6, 12):j = url.format(j)txt2.append(j)for k in range(12, 18):k = url.format(k)txt3.append(k)for k in range(18, 24):k = url.format(k)txt3.append(k)t1 = Thread(target=req, args=(txt1,))t1.start()print('t1线程开始!')t2 = Thread(target=req, args=(txt2,))t2.start()print('t2线程开始!')t3 = Thread(target=req, args=(txt3,))t3.start()print('t3线程开始!')t4 = Thread(target=req, args=(txt4,))t4.start()print('t4线程开始!')

上面这个开了4个线程的代码其实对爬虫还是不太友好。
以下代码可以在详细页进行爬虫,建议使用生产者消费者模式。

import re
import requestsurl = 'https://jobs.51job.com/chengdu-jjq/114069603.html?s=01&t=0'
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.110 Safari/537.36'}
response = requests.get(url=url, headers=headers, timeout=5)
response.encoding = 'GBK'
# 工作职位
job = re.findall(r'<h1 title="(.*?)">', response.text)
print(job)
# 薪资
salary = re.findall(r'<h1 title=".*?">.*?<input value="\d+" name="hidJobID" id="hidJobID" type="hidden" jt="0">.*?<strong>(.*?)</strong>', response.text, re.S)
print(salary)
# 公司名称
company = re.findall(r'target="_blank" title="(.*?)" class="catn">', response.text)
print(company)
# 公司性质
flag = re.findall(r'<p class="at" title="(.*?)"><span class="i_flag"></span>.*?</p>', response.text)
print(flag)
# 公司规模
people = re.findall(r'<p class="at" title="(.*?)"><span class="i_people"></span>.*?</p>', response.text)
print(people)
# 职位详细的内容:
content = re.findall(r'<p class="msg ltype" title="(.*?)">.*?</p>', response.text, re.S)
# 将正则匹配的内容进行字符串处理
content_str = ''.join(content)
# 城市
txt_city = re.findall(r'.*?(成都.*?)&nbsp.*?', content_str)
print(txt_city)
# 招多少人
txt_count = re.findall(r'.*?(招\d人).*?', content_str)
print(txt_count)
# 经验
txt_experience = re.findall(r'.*?(无工作经验).*?', content_str)
if len(txt_experience) == 0:txt_experience = re.findall(r'.*?(\d+年经验).*?', content_str)
print(txt_experience)
# 发布日期
txt_date = re.findall(r'.*?(\d+-\d+发布).*?', content_str)
print(txt_date)
# 学历要求, 只匹配了大专和本科
txt_education = re.findall(r'.*?(本科).*?', content_str)
if len(txt_education) == 0:txt_education = re.findall(r'.*?(大专).*?', content_str)
else:txt_education = '无学历要求'
print(txt_education)
# 职位招聘要求内容描述:
descrition = re.findall(r'<div class="bmsg job_msg inbox">(.*?)<div class="mt10">', response.text, re.S)
descrition = ''.join(descrition).replace('\r\n\t\t\t\t\t\t', '').replace('<p>', '').replace('</p>', '').replace('<span>', '').replace('</span>', '').replace('<br>', '').replace('&nbsp;', '').replace('</div>', '').replace('<div>', '').replace('\t\t\t\t\t\t\t\t\t\t\t\t', '').replace('<b>', '').replace('</b>', '').replace('</li>', '').replace('</strong>', '').replace('<strong>', '').replace('<li>', '')
print(descrition)

这篇关于换坑季-51Job前程无忧 Python爬虫的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/388383

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四