基于内容的电影推荐:物品冷启动处理

2023-11-10 23:20

本文主要是介绍基于内容的电影推荐:物品冷启动处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于内容的电影推荐:物品冷启动处理

    • 基于内容的电影推荐:物品冷启动处理
        • word2vec原理简介
        • Word2Vec
          • 两个重要模型:CBOW和Skip-Gram
        • Word2Vec使用
        • Doc2Vec使用

基于内容的电影推荐:物品冷启动处理

利用Word2Vec可以计算电影所有标签词之间的关系程度,可用于计算电影之间的相似度

word2vec原理简介
  • word2vec是google在2013年开源的一个NLP(Natural Language Processing自然语言处理) 工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。

  • one-hot vector VS. word vector

    • 用向量来表示词并不是word2vec的首创
    • 最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。
    • 比如下面5个词组成词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)同样的道理,词"Woman"的词向量就是(0,0,0,1,0)。

在这里插入图片描述

  • one hot vector的问题

    • 如果词汇表非常大,如达到万级别,这样每个词都用万维的向量来表示浪费内存。这样的向量除了一个位置是1,其余位置全部为0,表达效率低(稀疏),需要降低词向量的维度
    • 难以发现词之间的关系,以及难以捕捉句法(结构)和语义(意思)之间的关系
    • Dristributed representation可以解决One hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度一般需要我们在训练时指定。
    • 比如下图我们将词汇表里的词用"Royalty(王位)",“Masculinity(男性气质)”, "Femininity(女性气质)"和"Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)。当然在实际情况中,我们并不一定能对词向量的每个维度做一个很好的解释。

在这里插入图片描述

Word2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logginglogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)sentences = list(movie_profile["profile"].values)model = gensim.models.Word2Vec(sentences, window=3, min_count=1, iter=20)while True:words = input("words: ")  # actionret = model.wv.most_similar(positive=[words], topn=10)print(ret)

Doc2Vec是建立在Word2Vec上的,用于直接计算以文档为单位的文档向量,这里我们将一部电影的所有标签词,作为整个文档,这样可以计算出每部电影的向量,通过计算向量之间的距离,来判断用于计算电影之间的相似程度。

这样可以解决物品冷启动问题

Doc2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npfrom pprint import pprintdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logging
from gensim.models.doc2vec import Doc2Vec, TaggedDocumentlogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)documents = [TaggedDocument(words, [movie_id]) for movie_id, words in movie_profile["profile"].iteritems()]# 训练模型并保存
model = Doc2Vec(documents, vector_size=100, window=3, min_count=1, workers=4, epochs=20)
from gensim.test.utils import get_tmpfile
fname = get_tmpfile("my_doc2vec_model")
model.save(fname)words = movie_profile["profile"].loc[6]
print(words)
inferred_vector = model.infer_vector(words)
sims = model.docvecs.most_similar([inferred_vector], topn=10)
print(sims)

加油!

感谢!

努力!

这篇关于基于内容的电影推荐:物品冷启动处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/385946

相关文章

Springboot处理跨域的实现方式(附Demo)

《Springboot处理跨域的实现方式(附Demo)》:本文主要介绍Springboot处理跨域的实现方式(附Demo),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录Springboot处理跨域的方式1. 基本知识2. @CrossOrigin3. 全局跨域设置4.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解

Python使用date模块进行日期处理的终极指南

《Python使用date模块进行日期处理的终极指南》在处理与时间相关的数据时,Python的date模块是开发者最趁手的工具之一,本文将用通俗的语言,结合真实案例,带您掌握date模块的六大核心功能... 目录引言一、date模块的核心功能1.1 日期表示1.2 日期计算1.3 日期比较二、六大常用方法详

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Java使用多线程处理未知任务数的方案介绍

《Java使用多线程处理未知任务数的方案介绍》这篇文章主要为大家详细介绍了Java如何使用多线程实现处理未知任务数,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 知道任务个数,你可以定义好线程数规则,生成线程数去跑代码说明:1.虚拟线程池:使用 Executors.newVir

一文带你深入了解Python中的GeneratorExit异常处理

《一文带你深入了解Python中的GeneratorExit异常处理》GeneratorExit是Python内置的异常,当生成器或协程被强制关闭时,Python解释器会向其发送这个异常,下面我们来看... 目录GeneratorExit:协程世界的死亡通知书什么是GeneratorExit实际中的问题案例

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES