基于内容的电影推荐:物品冷启动处理

2023-11-10 23:20

本文主要是介绍基于内容的电影推荐:物品冷启动处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于内容的电影推荐:物品冷启动处理

    • 基于内容的电影推荐:物品冷启动处理
        • word2vec原理简介
        • Word2Vec
          • 两个重要模型:CBOW和Skip-Gram
        • Word2Vec使用
        • Doc2Vec使用

基于内容的电影推荐:物品冷启动处理

利用Word2Vec可以计算电影所有标签词之间的关系程度,可用于计算电影之间的相似度

word2vec原理简介
  • word2vec是google在2013年开源的一个NLP(Natural Language Processing自然语言处理) 工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。

  • one-hot vector VS. word vector

    • 用向量来表示词并不是word2vec的首创
    • 最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。
    • 比如下面5个词组成词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)同样的道理,词"Woman"的词向量就是(0,0,0,1,0)。

在这里插入图片描述

  • one hot vector的问题

    • 如果词汇表非常大,如达到万级别,这样每个词都用万维的向量来表示浪费内存。这样的向量除了一个位置是1,其余位置全部为0,表达效率低(稀疏),需要降低词向量的维度
    • 难以发现词之间的关系,以及难以捕捉句法(结构)和语义(意思)之间的关系
    • Dristributed representation可以解决One hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度一般需要我们在训练时指定。
    • 比如下图我们将词汇表里的词用"Royalty(王位)",“Masculinity(男性气质)”, "Femininity(女性气质)"和"Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)。当然在实际情况中,我们并不一定能对词向量的每个维度做一个很好的解释。

在这里插入图片描述

Word2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logginglogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)sentences = list(movie_profile["profile"].values)model = gensim.models.Word2Vec(sentences, window=3, min_count=1, iter=20)while True:words = input("words: ")  # actionret = model.wv.most_similar(positive=[words], topn=10)print(ret)

Doc2Vec是建立在Word2Vec上的,用于直接计算以文档为单位的文档向量,这里我们将一部电影的所有标签词,作为整个文档,这样可以计算出每部电影的向量,通过计算向量之间的距离,来判断用于计算电影之间的相似程度。

这样可以解决物品冷启动问题

Doc2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npfrom pprint import pprintdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logging
from gensim.models.doc2vec import Doc2Vec, TaggedDocumentlogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)documents = [TaggedDocument(words, [movie_id]) for movie_id, words in movie_profile["profile"].iteritems()]# 训练模型并保存
model = Doc2Vec(documents, vector_size=100, window=3, min_count=1, workers=4, epochs=20)
from gensim.test.utils import get_tmpfile
fname = get_tmpfile("my_doc2vec_model")
model.save(fname)words = movie_profile["profile"].loc[6]
print(words)
inferred_vector = model.infer_vector(words)
sims = model.docvecs.most_similar([inferred_vector], topn=10)
print(sims)

加油!

感谢!

努力!

这篇关于基于内容的电影推荐:物品冷启动处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/385946

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

Java中Switch Case多个条件处理方法举例

《Java中SwitchCase多个条件处理方法举例》Java中switch语句用于根据变量值执行不同代码块,适用于多个条件的处理,:本文主要介绍Java中SwitchCase多个条件处理的相... 目录前言基本语法处理多个条件示例1:合并相同代码的多个case示例2:通过字符串合并多个case进阶用法使用

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Python处理函数调用超时的四种方法

《Python处理函数调用超时的四种方法》在实际开发过程中,我们可能会遇到一些场景,需要对函数的执行时间进行限制,例如,当一个函数执行时间过长时,可能会导致程序卡顿、资源占用过高,因此,在某些情况下,... 目录前言func-timeout1. 安装 func-timeout2. 基本用法自定义进程subp

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St