基于内容的电影推荐:物品冷启动处理

2023-11-10 23:20

本文主要是介绍基于内容的电影推荐:物品冷启动处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于内容的电影推荐:物品冷启动处理

    • 基于内容的电影推荐:物品冷启动处理
        • word2vec原理简介
        • Word2Vec
          • 两个重要模型:CBOW和Skip-Gram
        • Word2Vec使用
        • Doc2Vec使用

基于内容的电影推荐:物品冷启动处理

利用Word2Vec可以计算电影所有标签词之间的关系程度,可用于计算电影之间的相似度

word2vec原理简介
  • word2vec是google在2013年开源的一个NLP(Natural Language Processing自然语言处理) 工具,它的特点是将所有的词向量化,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系。

  • one-hot vector VS. word vector

    • 用向量来表示词并不是word2vec的首创
    • 最早的词向量是很冗长的,它使用是词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。
    • 比如下面5个词组成词汇表,词"Queen"的序号为2, 那么它的词向量就是(0,1,0,0,0)同样的道理,词"Woman"的词向量就是(0,0,0,1,0)。

在这里插入图片描述

  • one hot vector的问题

    • 如果词汇表非常大,如达到万级别,这样每个词都用万维的向量来表示浪费内存。这样的向量除了一个位置是1,其余位置全部为0,表达效率低(稀疏),需要降低词向量的维度
    • 难以发现词之间的关系,以及难以捕捉句法(结构)和语义(意思)之间的关系
    • Dristributed representation可以解决One hot representation的问题,它的思路是通过训练,将每个词都映射到一个较短的词向量上来。所有的这些词向量就构成了向量空间,进而可以用普通的统计学的方法来研究词与词之间的关系。这个较短的词向量维度一般需要我们在训练时指定。
    • 比如下图我们将词汇表里的词用"Royalty(王位)",“Masculinity(男性气质)”, "Femininity(女性气质)"和"Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)。当然在实际情况中,我们并不一定能对词向量的每个维度做一个很好的解释。

在这里插入图片描述

Word2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logginglogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)sentences = list(movie_profile["profile"].values)model = gensim.models.Word2Vec(sentences, window=3, min_count=1, iter=20)while True:words = input("words: ")  # actionret = model.wv.most_similar(positive=[words], topn=10)print(ret)

Doc2Vec是建立在Word2Vec上的,用于直接计算以文档为单位的文档向量,这里我们将一部电影的所有标签词,作为整个文档,这样可以计算出每部电影的向量,通过计算向量之间的距离,来判断用于计算电影之间的相似程度。

这样可以解决物品冷启动问题

Doc2Vec使用
from gensim.models import TfidfModelimport pandas as pd
import numpy as npfrom pprint import pprintdef get_movie_dataset():# 加载基于所有电影的标签# all-tags.csv来自ml-latest数据集中# 由于ml-latest-small中标签数据太多,因此借助其来扩充_tags = pd.read_csv("datasets/ml-latest-small/all-tags.csv", usecols=range(1, 3)).dropna()tags = _tags.groupby("movieId").agg(list)# 加载电影列表数据集movies = pd.read_csv("datasets/ml-latest-small/movies.csv", index_col="movieId")# 将类别词分开movies["genres"] = movies["genres"].apply(lambda x: x.split("|"))# 为每部电影匹配对应的标签数据,如果没有将会是NANmovies_index = set(movies.index) & set(tags.index)new_tags = tags.loc[list(movies_index)]ret = movies.join(new_tags)# 构建电影数据集,包含电影Id、电影名称、类别、标签四个字段# 如果电影没有标签数据,那么就替换为空列表movie_dataset = pd.DataFrame(map(lambda x: (x[0], x[1], x[2], x[2]+x[3]) if x[3] is not np.nan else (x[0], x[1], x[2], []), ret.itertuples()), columns=["movieId", "title", "genres","tags"])movie_dataset.set_index("movieId", inplace=True)return movie_datasetdef create_movie_profile(movie_dataset):'''使用tfidf,分析提取topn关键词:param movie_dataset::return:'''dataset = movie_dataset["tags"].valuesfrom gensim.corpora import Dictionarydct = Dictionary(dataset)corpus = [dct.doc2bow(line) for line in dataset]model = TfidfModel(corpus)_movie_profile = []for i, data in enumerate(movie_dataset.itertuples()):mid = data[0]title = data[1]genres = data[2]vector = model[corpus[i]]movie_tags = sorted(vector, key=lambda x: x[1], reverse=True)[:30]topN_tags_weights = dict(map(lambda x: (dct[x[0]], x[1]), movie_tags))# 将类别词的添加进去,并设置权重值为1.0for g in genres:topN_tags_weights[g] = 1.0topN_tags = [i[0] for i in topN_tags_weights.items()]_movie_profile.append((mid, title, topN_tags, topN_tags_weights))movie_profile = pd.DataFrame(_movie_profile, columns=["movieId", "title", "profile", "weights"])movie_profile.set_index("movieId", inplace=True)return movie_profilemovie_dataset = get_movie_dataset()
movie_profile = create_movie_profile(movie_dataset)import gensim, logging
from gensim.models.doc2vec import Doc2Vec, TaggedDocumentlogging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)documents = [TaggedDocument(words, [movie_id]) for movie_id, words in movie_profile["profile"].iteritems()]# 训练模型并保存
model = Doc2Vec(documents, vector_size=100, window=3, min_count=1, workers=4, epochs=20)
from gensim.test.utils import get_tmpfile
fname = get_tmpfile("my_doc2vec_model")
model.save(fname)words = movie_profile["profile"].loc[6]
print(words)
inferred_vector = model.infer_vector(words)
sims = model.docvecs.most_similar([inferred_vector], topn=10)
print(sims)

加油!

感谢!

努力!

这篇关于基于内容的电影推荐:物品冷启动处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/385946

相关文章

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Knife4j+Axios+Redis前后端分离架构下的 API 管理与会话方案(最新推荐)

《Knife4j+Axios+Redis前后端分离架构下的API管理与会话方案(最新推荐)》本文主要介绍了Swagger与Knife4j的配置要点、前后端对接方法以及分布式Session实现原理,... 目录一、Swagger 与 Knife4j 的深度理解及配置要点Knife4j 配置关键要点1.Spri

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python Pillow 库详解文档(最新推荐)

《PythonPillow库详解文档(最新推荐)》Pillow是Python中最流行的图像处理库,它是PythonImagingLibrary(PIL)的现代分支和继承者,本文给大家介绍Pytho... 目录python Pillow 库详解文档简介安装核心模块架构Image 模块 - 核心图像处理基本导入

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos