离散Hopfield神经网络分类——高校科研能力评价

2023-11-10 18:20

本文主要是介绍离散Hopfield神经网络分类——高校科研能力评价,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

      大家好,我是带我去滑雪!

      高校科研能力评价的重要性在于它对高等教育和科研体系的有效运作、发展和提高质量具有深远的影响。良好的科研能力评价可以帮助高校识别其在不同领域的强项和薄弱点,从而制定战略,改进教学和科研,提高质量,提高在国际和国内的竞争力。因此,如何准确评价高校的科研能力是摆在政府、企业、高校面前的一个十分重要的问题。本次利用离散Hopfield神经网络对高校科研能力进行评价。

(1)问题描述与指标选取

         影响高校科研能力的因素有很多,本次选取最重要的11个因素作为评价指标:科研队伍、科研基地、科技学识及相应的载体、科研经费、科研管理、信息接收加工能力、学识积累与技术储备能力、科研技术创新能力、知识释放能力、自适应调节能力、科研决策能力。高校科研能力一般分为五个等级:很强(Ⅰ)、较强(Ⅱ)、一般(Ⅲ)、较差(Ⅳ)、很差(Ⅴ)。

       利用某机构对20所高校的科研能力调研的数据,结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。

(2)模型建立思路

       将各个等级的样本对应的各评价指标的平均值作为各个等级的理想评价指标,即作为Hopfield神经网络的平衡点,Hopfield神经网络学习过程即为典型的分类等级的评价指标逐渐趋近于Hopfield神经网络平衡点的过程。学习完成后,Hopfield神经网络存储的平衡点即为各个分类等级所对应的评价指标。当有待分类的高校评价指标输入时,Hopfield神经网络利用其联想记忆的能力逐渐趋近于某个存储的平衡点,当状态不再改变时,此时平衡点所对应的便是待求的分类等级。

(3)代码实现

%% 清空环境变量
clear all
clc%% 导入数据
load class.mat%% 目标向量
T = [class_1 class_2 class_3 class_4 class_5];%% 创建网络
net = newhop(T);%% 导入待分类样本
load sim.mat
A = {[sim_1 sim_2 sim_3 sim_4 sim_5]};%% 网络仿真
Y = sim(net,{25 20},{},A);%% 结果显示
Y1 = Y{20}(:,1:5)
Y2 = Y{20}(:,6:10)
Y3 = Y{20}(:,11:15)
Y4 = Y{20}(:,16:20)
Y5 = Y{20}(:,21:25)%% 绘图
result = {T;A{1};Y{20}};
figure
for p = 1:3for k = 1:5 subplot(3,5,(p-1)*5+k)temp = result{p}(:,(k-1)*5+1:k*5);[m,n] = size(temp);for i = 1:mfor j = 1:nif temp(i,j) > 0plot(j,m-i,'ko','MarkerFaceColor','k');elseplot(j,m-i,'ko');endhold onendendaxis([0 6 0 12])axis offif p == 1title(['class' num2str(k)])elseif p == 2title(['pre-sim' num2str(k)])elsetitle(['sim' num2str(k)])endend                
end

(4)输出结果


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

这篇关于离散Hopfield神经网络分类——高校科研能力评价的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/384455

相关文章

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

如何评价Ubuntu 24.04 LTS? Ubuntu 24.04 LTS新功能亮点和重要变化

《如何评价Ubuntu24.04LTS?Ubuntu24.04LTS新功能亮点和重要变化》Ubuntu24.04LTS即将发布,带来一系列提升用户体验的显著功能,本文深入探讨了该版本的亮... Ubuntu 24.04 LTS,代号 Noble NumBAT,正式发布下载!如果你在使用 Ubuntu 23.

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

EasyPlayer.js网页H5 Web js播放器能力合集

最近遇到一个需求,要求做一款播放器,发现能力上跟EasyPlayer.js基本一致,满足要求: 需求 功性能 分类 需求描述 功能 预览 分屏模式 单分屏(单屏/全屏) 多分屏(2*2) 多分屏(3*3) 多分屏(4*4) 播放控制 播放(单个或全部) 暂停(暂停时展示最后一帧画面) 停止(单个或全部) 声音控制(开关/音量调节) 主辅码流切换 辅助功能 屏

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

基于SSM+Vue+MySQL的可视化高校公寓管理系统

系统展示 管理员界面 宿管界面 学生界面 系统背景   当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前,不接受信息改革带来的信息技术的企业随时面临被淘汰,被取代的风险。所以当今,各个行业领域,不管是传统的教育行业

机器学习之监督学习(三)神经网络

机器学习之监督学习(三)神经网络基础 0. 文章传送1. 深度学习 Deep Learning深度学习的关键特点深度学习VS传统机器学习 2. 生物神经网络 Biological Neural Network3. 神经网络模型基本结构模块一:TensorFlow搭建神经网络 4. 反向传播梯度下降 Back Propagation Gradient Descent模块二:激活函数 activ