9月5日关键点检测学习笔记——人体骨骼点检测:自底向上

2023-11-10 14:59

本文主要是介绍9月5日关键点检测学习笔记——人体骨骼点检测:自底向上,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、堆叠沙漏网络 Stacked Hourglass Networks
    • 1、Hourglass Module
    • 2、Heat map
  • 二、自顶向下的问题
  • 三、自底向上
    • 1、OpenPose
  • 四、OpenPose 实战


前言

本文为9月5日关键点检测学习笔记——人体骨骼点检测:自底向上,分为四个章节:

  • 堆叠沙漏网络 Stacked Hourglass Networks;
  • 自顶向下的问题;
  • 自底向上;
  • OpenPose 实战。

一、堆叠沙漏网络 Stacked Hourglass Networks

1

2

1、Hourglass Module

2

2、Heat map

3


二、自顶向下的问题

  1. 速度慢;
  2. Temporal occlusion 目标遮挡。

三、自底向上

1、OpenPose

4
5
每个 confidence map 是一个灰度图,其最大值的位置坐标即为对应人体某个概率最高的关键点。

6
另一个分支预测 part affinities 的 2D 向量场,表示两个关键点间的关联度。

  • Parts detection:

7

  • Parts association:
    8
    9
    L c , k ∗ ( p ) = { v i f p o n l i m b c , k 0 o t h e r w i s e v = ( x j 2 , k − x j 1 , k ) ∣ ∣ x j 2 , k − x j 1 , k ∣ ∣ 2 0 ≤ v ⋅ ( p − x j i , k ) ≤ l c , k a n d ∣ v ⊥ ⋅ ( p − x j i , k ) ∣ ≤ σ l \textbf{L}^*_{c, k}(p) = \left\{\begin{matrix} \textbf{v} \quad if\ \textbf{p}\ on\ limb\ c, k \\ \textbf{0} \quad otherwise \end{matrix}\right. \\ \textbf{v} = \frac{(\textbf{x}_{j_2, k} - \textbf{x}_{j_1, k})}{||\textbf{x}_{j_2, k} - \textbf{x}_{j_1, k}||_2}\\ 0 \le \textbf{v}\cdot (\textbf{p} - \textbf{x}_{j_i, k} ) \le l_{c, k} \quad and \quad |\textbf{v}_\perp \cdot (\textbf{p} - \textbf{x}_{j_i, k}) | \le \sigma _l Lc,k(p)={vif p on limb c,k0otherwisev=∣∣xj2,kxj1,k2(xj2,kxj1,k)0v(pxji,k)lc,kandv(pxji,k)σl
    其中,四肢宽度 limb width σ l \sigma_l σl 为像素宽度,四肢长度: l c , k = ∣ ∣ x j 2 , k − x j 1 , k ∣ ∣ 2 l_{c, k} = ||\textbf{x}_{j_2, k} - \textbf{x}_{j_1, k}||_2 lc,k=∣∣xj2,kxj1,k2 v ⊥ \textbf{v}_{\perp} v v \textbf{v} v 的垂直向量。

四、OpenPose 实战

train_VGG19.py 代码如下:

import argparse
import time
import os
import numpy as np
from collections import OrderedDictimport torch
import torch.nn as nn
from torch.optim.lr_scheduler import ReduceLROnPlateaufrom lib.network.rtpose_vgg import get_model, use_vgg
from lib.datasets import coco, transforms, datasets
from lib.config import update_configDATA_DIR = '/data/coco'ANNOTATIONS_TRAIN = [os.path.join(DATA_DIR, 'annotations', item) for item in ['person_keypoints_train2017.json']]
ANNOTATIONS_VAL = os.path.join(DATA_DIR, 'annotations', 'person_keypoints_val2017.json')
IMAGE_DIR_TRAIN = os.path.join(DATA_DIR, 'images/train2017')
IMAGE_DIR_VAL = os.path.join(DATA_DIR, 'images/val2017')def train_cli(parser):group = parser.add_argument_group('dataset and loader')group.add_argument('--train-annotations', default=ANNOTATIONS_TRAIN)group.add_argument('--train-image-dir', default=IMAGE_DIR_TRAIN)group.add_argument('--val-annotations', default=ANNOTATIONS_VAL)group.add_argument('--val-image-dir', default=IMAGE_DIR_VAL)group.add_argument('--pre-n-images', default=8000, type=int,help='number of images to sampe for pretraining')group.add_argument('--n-images', default=None, type=int,help='number of images to sample')group.add_argument('--duplicate-data', default=None, type=int,help='duplicate data')group.add_argument('--loader-workers', default=8, type=int,help='number of workers for data loading')group.add_argument('--batch-size', default=72, type=int,help='batch size')group.add_argument('--lr', '--learning-rate', default=1., type=float,metavar='LR', help='initial learning rate')group.add_argument('--momentum', default=0.9, type=float, metavar='M',help='momentum')group.add_argument('--weight-decay', '--wd', default=0.000, type=float,metavar='W', help='weight decay (default: 1e-4)') group.add_argument('--nesterov', dest='nesterov', default=True, type=bool)     group.add_argument('--print_freq', default=20, type=int, metavar='N',help='number of iterations to print the training statistics')    def train_factory(args, preprocess, target_transforms):train_datas = [datasets.CocoKeypoints(root=args.train_image_dir,annFile=item,preprocess=preprocess,image_transform=transforms.image_transform_train,target_transforms=target_transforms,n_images=args.n_images,) for item in args.train_annotations]train_data = torch.utils.data.ConcatDataset(train_datas)train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size, shuffle=True,pin_memory=args.pin_memory, num_workers=args.loader_workers, drop_last=True)val_data = datasets.CocoKeypoints(root=args.val_image_dir,annFile=args.val_annotations,preprocess=preprocess,image_transform=transforms.image_transform_train,target_transforms=target_transforms,n_images=args.n_images,)val_loader = torch.utils.data.DataLoader(val_data, batch_size=args.batch_size, shuffle=False,pin_memory=args.pin_memory, num_workers=args.loader_workers, drop_last=True)return train_loader, val_loader, train_data, val_datadef cli():parser = argparse.ArgumentParser(description=__doc__,formatter_class=argparse.ArgumentDefaultsHelpFormatter,)train_cli(parser)parser.add_argument('-o', '--output', default=None,help='output file')parser.add_argument('--stride-apply', default=1, type=int,help='apply and reset gradients every n batches')parser.add_argument('--epochs', default=75, type=int,help='number of epochs to train')parser.add_argument('--freeze-base', default=0, type=int,help='number of epochs to train with frozen base')parser.add_argument('--pre-lr', type=float, default=1e-4,help='pre learning rate')parser.add_argument('--update-batchnorm-runningstatistics',default=False, action='store_true',help='update batch norm running statistics')parser.add_argument('--square-edge', default=368, type=int,help='square edge of input images')parser.add_argument('--ema', default=1e-3, type=float,help='ema decay constant')parser.add_argument('--debug-without-plots', default=False, action='store_true',help='enable debug but dont plot')parser.add_argument('--disable-cuda', action='store_true',help='disable CUDA')                        parser.add_argument('--model_path', default='./network/weight/', type=str, metavar='DIR',help='path to where the model saved')                         args = parser.parse_args()# add args.deviceargs.device = torch.device('cpu')args.pin_memory = Falseif not args.disable_cuda and torch.cuda.is_available():args.device = torch.device('cuda')args.pin_memory = Truereturn argsargs = cli()print("Loading dataset...")
# load train data
preprocess = transforms.Compose([transforms.Normalize(),transforms.RandomApply(transforms.HFlip(), 0.5),transforms.RescaleRelative(),transforms.Crop(args.square_edge),transforms.CenterPad(args.square_edge),])
train_loader, val_loader, train_data, val_data = train_factory(args, preprocess, target_transforms=None)def build_names():names = []for j in range(1, 7):for k in range(1, 3):names.append('loss_stage%d_L%d' % (j, k))return namesdef get_loss(saved_for_loss, heat_temp, vec_temp):names = build_names()saved_for_log = OrderedDict()criterion = nn.MSELoss(reduction='mean').cuda()total_loss = 0for j in range(6):pred1 = saved_for_loss[2 * j]pred2 = saved_for_loss[2 * j + 1] # Compute lossesloss1 = criterion(pred1, vec_temp)loss2 = criterion(pred2, heat_temp) total_loss += loss1total_loss += loss2# print(total_loss)# Get value from Variable and save for logsaved_for_log[names[2 * j]] = loss1.item()saved_for_log[names[2 * j + 1]] = loss2.item()saved_for_log['max_ht'] = torch.max(saved_for_loss[-1].data[:, 0:-1, :, :]).item()saved_for_log['min_ht'] = torch.min(saved_for_loss[-1].data[:, 0:-1, :, :]).item()saved_for_log['max_paf'] = torch.max(saved_for_loss[-2].data).item()saved_for_log['min_paf'] = torch.min(saved_for_loss[-2].data).item()return total_loss, saved_for_logdef train(train_loader, model, optimizer, epoch):batch_time = AverageMeter()data_time = AverageMeter()losses = AverageMeter()meter_dict = {}for name in build_names():meter_dict[name] = AverageMeter()meter_dict['max_ht'] = AverageMeter()meter_dict['min_ht'] = AverageMeter()    meter_dict['max_paf'] = AverageMeter()    meter_dict['min_paf'] = AverageMeter()# switch to train modemodel.train()end = time.time()for i, (img, heatmap_target, paf_target) in enumerate(train_loader):# measure data loading time#writer.add_text('Text', 'text logged at step:' + str(i), i)#for name, param in model.named_parameters():#    writer.add_histogram(name, param.clone().cpu().data.numpy(),i)        data_time.update(time.time() - end)img = img.cuda()heatmap_target = heatmap_target.cuda()paf_target = paf_target.cuda()# compute output_,saved_for_loss = model(img)total_loss, saved_for_log = get_loss(saved_for_loss, heatmap_target, paf_target)for name,_ in meter_dict.items():meter_dict[name].update(saved_for_log[name], img.size(0))losses.update(total_loss, img.size(0))# compute gradient and do SGD stepoptimizer.zero_grad()total_loss.backward()optimizer.step()# measure elapsed timebatch_time.update(time.time() - end)end = time.time()if i % args.print_freq == 0:print_string = 'Epoch: [{0}][{1}/{2}]\t'.format(epoch, i, len(train_loader))print_string +='Data time {data_time.val:.3f} ({data_time.avg:.3f})\t'.format( data_time=data_time)print_string += 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(loss=losses)for name, value in meter_dict.items():print_string+='{name}: {loss.val:.4f} ({loss.avg:.4f})\t'.format(name=name, loss=value)print(print_string)return losses.avg  def validate(val_loader, model, epoch):batch_time = AverageMeter()data_time = AverageMeter()losses = AverageMeter()meter_dict = {}for name in build_names():meter_dict[name] = AverageMeter()meter_dict['max_ht'] = AverageMeter()meter_dict['min_ht'] = AverageMeter()    meter_dict['max_paf'] = AverageMeter()    meter_dict['min_paf'] = AverageMeter()# switch to train modemodel.eval()end = time.time()for i, (img, heatmap_target, paf_target) in enumerate(val_loader):# measure data loading timedata_time.update(time.time() - end)img = img.cuda()heatmap_target = heatmap_target.cuda()paf_target = paf_target.cuda()# compute output_,saved_for_loss = model(img)total_loss, saved_for_log = get_loss(saved_for_loss, heatmap_target, paf_target)#for name,_ in meter_dict.items():#    meter_dict[name].update(saved_for_log[name], img.size(0))losses.update(total_loss.item(), img.size(0))# measure elapsed timebatch_time.update(time.time() - end)end = time.time()  if i % args.print_freq == 0:print_string = 'Epoch: [{0}][{1}/{2}]\t'.format(epoch, i, len(val_loader))print_string +='Data time {data_time.val:.3f} ({data_time.avg:.3f})\t'.format( data_time=data_time)print_string += 'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(loss=losses)for name, value in meter_dict.items():print_string+='{name}: {loss.val:.4f} ({loss.avg:.4f})\t'.format(name=name, loss=value)print(print_string)return losses.avgclass AverageMeter(object):"""Computes and stores the average and current value"""def __init__(self):self.reset()def reset(self):self.val = 0self.avg = 0self.sum = 0self.count = 0def update(self, val, n=1):self.val = valself.sum += val * nself.count += nself.avg = self.sum / self.count# model
model = get_model(trunk='vgg19')
model = torch.nn.DataParallel(model).cuda()
# load pretrained
use_vgg(model)# Fix the VGG weights first, and then the weights will be released
for i in range(20):for param in model.module.model0[i].parameters():param.requires_grad = Falsetrainable_vars = [param for param in model.parameters() if param.requires_grad]
optimizer = torch.optim.SGD(trainable_vars, lr=args.lr,momentum=args.momentum,weight_decay=args.weight_decay,nesterov=args.nesterov)     for epoch in range(5):# train for one epochtrain_loss = train(train_loader, model, optimizer, epoch)# evaluate on validation setval_loss = validate(val_loader, model, epoch)  # Release all weights                                   
for param in model.module.parameters():param.requires_grad = Truetrainable_vars = [param for param in model.parameters() if param.requires_grad]
optimizer = torch.optim.SGD(trainable_vars, lr=args.lr,momentum=args.momentum,weight_decay=args.weight_decay,nesterov=args.nesterov)          lr_scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.8, patience=5, verbose=True, threshold=0.0001, threshold_mode='rel', cooldown=3, min_lr=0, eps=1e-08)best_val_loss = np.infmodel_save_filename = './network/weight/best_pose.pth'
for epoch in range(5, args.epochs):# train for one epochtrain_loss = train(train_loader, model, optimizer, epoch)# evaluate on validation setval_loss = validate(val_loader, model, epoch)   lr_scheduler.step(val_loss)                        is_best = val_loss<best_val_lossbest_val_loss = min(val_loss, best_val_loss)if is_best:torch.save(model.state_dict(), model_save_filename)      

这篇关于9月5日关键点检测学习笔记——人体骨骼点检测:自底向上的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/383436

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss