JAVA算法:Jump Game 45题和55题算法详解

2023-11-10 14:08
文章标签 java 算法 详解 45 game jump

本文主要是介绍JAVA算法:Jump Game 45题和55题算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在LeetCode中45题和55题是关于Jump Game的问题,下面来看看这两道题目的求解方法。

这两个题目的区别是:55题的要求判断你是否能够从开始位置跳到结束位置;而45题的要求是求你从开始位置能够跳到结束位置的最小跳跃次数。。

原题链接:

55. Jump Game https://leetcode.com/problems/jump-game/

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

Example 1:

Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:

Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
             jump length is 0, which makes it impossible to reach the last index.

45. Jump Game II https://leetcode.com/problems/jump-game-ii/

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

Example:

Input: [2,3,1,1,4]
Output: 2
Explanation: The minimum number of jumps to reach the last index is 2.
    Jump 1 step from index 0 to 1, then 3 steps to the last index.
Note:

You can assume that you can always reach the last index.

 

问题求解:从起始位置能够跳跃到最后的终止位置

算法分析:回溯算法(Backtracking)

采用回溯算法(Backtracking),这是一个效率低下的解决方案。
思路:

尝试从第一个位置到最后一个位置的每一个跳跃模式。
从第一个位置开始,跳到所有可以到达的索引。 
重复这个过程,直到到达最后一个索引。 
卡住时,回退。

算法设计:

    /** 从index为0的位置开始起跳* */public boolean canJump(int[] nums) {return canJumpFromPosition(0, nums);}/** 采用回溯算法(Backtracking),这是一个效率低下的解决方案。* 思路:* 尝试从第一个位置到最后一个位置的每一个跳跃模式。* 从第一个位置开始,跳到所有可以到达的索引。 * 重复这个过程,直到到达最后一个索引。 * 卡住时,回退。*/public boolean canJumpFromPosition(int position, int[] nums) {//如果到达结束位置,则返回trueif (position == nums.length - 1) {return true;}int furthestJump = Math.min(position + nums[position], nums.length - 1);for (int nextPosition = position + 1; nextPosition <= furthestJump; nextPosition++) {if (canJumpFromPosition(nextPosition, nums)) {return true;}}return false;}

这个算法虽然可以得到正确的结果,但是在LeetCode上提交时超时!

算法设计:贪心算法(Greedy)

    /** 贪心算法(Greedy)* */public boolean canJump(int[] nums) {int lastPos = nums.length - 1;for (int i = nums.length - 1; i >= 0; i--) {if (i + nums[i] >= lastPos) {lastPos = i;System.out.println("lastPos = " + lastPos);}}return lastPos == 0;}

提交之后,Accepted!

算法设计:贪心算法(Greedy)设计

维护一个当前能跳到的最大值maxJump, 
若是maxJump 已经>=nums.length-1, 说明能跳到最后一个点,return true.
若是过程中maxJump <= i, 说明跳到当前点便不能往前,跳出loop, return false.

    /** 贪心算法* 维护一个当前能跳到的最大值maxJump, * 若是maxJump 已经>=nums.length-1, * 说明能跳到最后一个点,return true.* 若是过程中maxJump <= i, * 说明跳到当前点便不能往前,跳出loop, return false.* */public boolean canJump(int[] nums) {int n = nums.length;// maxJump是维护的当前能跳到的最大位置int maxJump = 0;// for (int i = 0; i < n && i <= maxJump; ++i)// maxJump = Math.max(nums[i] + i, maxJump);for (int i = 0; i < n; i++) {// i>maxJump表示无法到达i的位置,失败// maxJump >= (n - 1),此时的距离已经足够到达终点,成功if (i > maxJump || maxJump >= (n - 1))break;// nums[i]+i当前跳最远距离 maxJump为i之前跳最远距离maxJump = Math.max(maxJump, i + nums[i]);}return maxJump >= (n - 1);}

算法设计:动态规划(DP)

每次跳跃选择往最远处跳跃,如果最后能够跳到数组最后一位或者最后一位之后,

那么一定存在一种跳跃方式正好跳到最后一位上。

	/** 每次跳跃选择往最远处跳跃,如果最后能够跳到数组最后一位或者最后一位之后,* 那么一定存在一种跳跃方式正好跳到最后一位上* *//** 动态规划* */public boolean canJump(int[] nums) {int n = nums.length;// dp[i]表示当前跳跃的最大距离int dp[] = new int[n];dp[0] = nums[0];// i表示当前距离,也是下标for (int i = 1; i < n; i++) {// i点可达if (i <= dp[i - 1])dp[i] = Math.max(dp[i - 1], i + nums[i]);elsedp[i] = dp[i - 1];}return dp[n - 1] >= (n - 1);}

问题求解:从起始位置能够跳跃到最后的终止位置时,最小的跳跃次数

算法设计:贪心算法(Greedy)

	/** 给定一个非负整数数组,给定的初始化位置在数组的起始位置。* 数组中的每个元素代表着你能都在此位置跳跃的最大的距离。* 你的目标是用最少的跳跃数达到数组的末尾。* 算法:贪心* */public int jump(int[] nums) {if (nums.length <= 1)return 0;if (nums[0] == 0)return -1;// 记录当前活动距离int reach = nums[0];int steps = 0, start = 0;for (; start < nums.length && start <= reach;) {++steps;if (reach >= nums.length - 1) {return steps;}// nextMax表示下一步能到达的最远距离int nextMax = 0;// 在当前start和reach之间,找下一步能到达最远的距离的下标for (int i = start; i <= reach; ++i) {if ((i + nums[i]) > nextMax) {nextMax = i + nums[i];start = i;}}reach = nextMax;}return -1;}

算法设计:贪心算法(Greedy)

	public int jump(int[] nums) {if (nums == null || nums.length == 0) {return -1;}// cur是维护的当前能跳到的最大位置// 第step+1步,能到达的最远距离int cur = 0;// last是指从之前的点能reach到得最远位置// 已经可以到达的最大距离int last = 0;int step = 0;for (int i = 0; i < nums.length/* && i <= cur */; i++) {// 当i 大于之前点能碰到的最大位置时,就需要跳一步,// 并把last更新为cur.if (i > last) {step++;last = cur;}// 计算step+1的最大距离cur = Math.max(cur, nums[i] + i);}// 最后返回若是cur能到最后一个元素,就返回step,// 若是到不了,就说明根本走不到最后一步,返回-1.return cur < nums.length - 1 ? -1 : step;}

更详细的分析,参考LeetCode上的Article栏目分析博文,链接地址:

https://leetcode.com/articles/jump-game/

还可以参考博主 FserSuN 的文章,链接地址:

https://blog.csdn.net/Revivedsun/article/details/52951765

这两篇文章写得非常棒!

 

这篇关于JAVA算法:Jump Game 45题和55题算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/383130

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第