第五章《数据降维:深入理解 PCA 的来龙去脉》笔记

2023-11-10 11:44

本文主要是介绍第五章《数据降维:深入理解 PCA 的来龙去脉》笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主成分分析(Principal Component Analysis,PCA) 就是机器学习中一种常用且有效的数据降维方法。

5.1 PCA是什么

PCA 将相关性高的变量转变为较少的独立新变量,实现用较少的综合指标分别代表存在于 各个变量中的各类信息,既减少高维数据的变量维度,又尽量降低原变量数据包含信息的损失程度,是一种典型的数据降维方法。PCA 保留了高维数据最重要的一部分特征,去除了数据集 中的噪声和不重要特征,这种方法在承受一定范围内的信息损失的情况下节省了大量时间和资源,是一种应用广泛的数据预处理方法。

5.2 用一个例子来理解PCA过程

经过零均值化的数据预处理后,我们就可以正式开启 PCA 过程了,步骤如下。

(1)计算协方差矩阵。

(2)计算特征值与特征向量。

(3)矩阵相乘实现降维。

从上述 PCA 降维的实际过程来看,对某个矩阵 A(m×n)降维实际上就是寻找对应的降维矩阵 P(k×m)。

5.3 如何寻找降维矩阵P

5.4 PCA降维的核心思想

5.4.1 核心思想一:基变换向量投影

要实现原始数据降维就是要将矩阵 A 中每个列向量的维度或 者行数合理地降低。要实现高维向量降维,一个常见的方法就是高维向量向低维空间投影。

向量 a 与向量 b 的内积结果就等于向量 a 在向量 b 方向上的投影长度 |a|cosθ。这就是向量内积的几何定义。

矩阵相乘的几何意义就是,两个矩阵相乘的结果是将右边矩阵中的每一个列向量变换 到以左边矩阵中每一个行向量为基底所表示的空间中。

5.4.2 核心思想二:协方差归零投影

既然数据降维的起因是高维数据的维度之间存在较高的相关性导致数据信息存在冗余,那 么数据降维的一个核心思想自然就是,数据降维后的维度之间尽可能相对独立,也就是降维之 后的数据维度之间的协方差为 0。

(1)什么是方差。

方差和标准差是最常用的度量一组数据分散程度的指标。对于一组含有 n 个样本的集合, 我们容易知道以下公式。

(2)协方差。

协方差度量的是维度和维度之间的关系。假设两组数据分别是 x 和 y,那么这两组数据的协方差为

(3)协方差矩阵。

多维数据就需要多次计算协方差,也就是将多维数据中的维度数据两两计算协方差。协方差矩阵就是度量维度和维度之间关系的矩阵。

所以,我们降维之后希望各个维度之间相互独立,也就是希望降维之后不同维度之间的协方差为 0,同样也就是希望上面的协方差矩阵除了主对角线之外的部分都为 0。

5.4.3 核心思想三:最大方差投影

这种投影数据点的分散实际上就是要求原始数据矩阵降维处理之后的新矩阵的维度的方差 尽可能大,也就是降维之后矩阵的协方差矩阵的对角线元素尽可能大。我们可以将这种降维投 影的要求称为“最大方差投影”。

5.4.4 PCA降维的关键:协方差矩阵对角化

降维之后新矩阵 Y 的协方差矩阵 Cy 的非主对角线元素尽可能为 0, 而主对角线元素尽可能大。满足上述要求的矩阵是一个对角矩阵,所以降维的实质就是要求降 维之后的新矩阵 Y 的协方差矩阵 Cy 是对角矩阵。

5.5 面向零基础读者详解PCA降维

5.5.1 计算矩阵Y的协方差矩阵Cy

1.为什么计算协方差矩阵

这是因为矩阵 Y 的协方差矩阵 Cy 的主对角线元素是降维后新维度的方差,非主对角线元素 是降维后各新维度的协方差。而 PCA 降维的核心思想就是“协方差归零投影”和“最大方差投 影”,也就是希望降维之后得到的新矩阵 Y 的各维度间的协方差尽量为 0,而维度的方差尽可能 大。上述要求翻译成数学语言,就是要求降维后矩阵 Y 的协方差矩阵为对角矩阵,这就是我们 考虑计算矩阵 Y 的协方差矩阵的原因。

2.详解协方差矩阵的表达式

协方差矩阵数学表达式 的推导过程。

5.5.2 矩阵Y的协方差矩阵Cy对角化

1.什么样的矩阵 Q 能够对角化 Cy
根据实对称矩阵正交对角化的定理可以得到。所以,要使矩阵 Y 的协方差矩阵是对角矩阵,只需要 即可。这个结果表明,矩阵 Q 如果是由原矩阵 A 的协方差矩阵 C 的特征向量构成的矩阵,矩阵 A 经过矩阵 Q 线性变换之后的矩阵 Y 的协方差矩阵 Cy 就为对角矩阵。

2.实对称矩阵对角化性质

实对称矩阵有一个非常好的性质,那就是其可以转化为对角矩阵。原矩阵的协方差矩 阵 C 满足实对称矩阵的条件,所以可以通过线性变换将 C 转化为对角矩阵 Λ,具体来说就是

5.5.3 求解降维矩阵P

我们总结出 PCA 降维的步骤如下。

(1)计算原矩阵 A 的协方差矩阵 C。

(2)计算协方差矩阵 C 的单位正交的特征向量与对应的特征值。

(3)根据降维要求,确定 k 值大小。将 C 的特征值从大到小排列,选取前 k 个特征值所对 应的特征向量。

(4)将这些特征向量作为行向量,求解出降维矩阵 P。 (5)将降维矩阵 P 乘以原矩阵 A 即可降维,得到 Y=PA。

5.6 编程实践:手把手教你写代码

这篇关于第五章《数据降维:深入理解 PCA 的来龙去脉》笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382458

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I