m在LTE-A系统载波聚合下的资源分配算法的matlab仿真

2023-11-10 11:21

本文主要是介绍m在LTE-A系统载波聚合下的资源分配算法的matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法描述

2.仿真效果预览

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

        载波聚合即CA,是LTE-A中的关键技术。是为满足用户峰值速率和系统容量提升的要求,增加系统传输带宽的技术,通过CA技术,用户最高上网速率可提升到300Mbps,带来极速上网体验。载波聚合是LTE-A中的关键技术。为了满足单用户峰值速率和系统容量提升的要求,一种最直接的办法就是增加系统传输带宽。因此LTE-Advanced系统引入一项增加传输带宽的技术,也就是CA。CA技术可以将2~5个LTE成员载波聚合在一起,实现最大100MHz的传输带宽。有效提高了上下行传输速率。终端根据自己的能力大小决定最多可以同时利用几个载波进行上下行传输。CA功能可以支持连续或非连续载波聚合,每个载波最大可以使用的资源是110个RB。每个用户在每个载波上使用独立的HARQ实体,每个传输块只能映射到特定的一个载波上。

      LTE采用由eNB构成的单层结构,这种结构有利于简化网络和减小延迟,实现低时延、低复杂度和低成本的要求。与3G接入网相比,LTE减少了RNC节点。名义上LTE是对3G的演进,但事实上它对3GPP的整个体系架构作了革命性的改变,逐步趋近于典型的IP宽带网络结构。

      LTE的架构也叫E-UTRAN架构,如图3所示。E-UTRAN主要由eNB构成。同UTRAN网络相比,eNB不仅具有NodeB的功能,还能完成RNC的大部分功能,包括物理层、MAC层、RRC、调度、接入控制、承载控制、接入移动性管理和Inter-cellRRM等。

为了满足LTE-A下行峰速1 Gbps,上行峰速500 Mbps的要求,需要提供最大100 MHz的传输带宽,但由于这么大带宽的连续频谱的稀缺,LTE-A提出了载波聚合的解决方案。

载波聚合(Carrier Aggregation, CA)是将2个或更多的载波单元(Component Carrier, CC)聚合在一起以支持更大的传输带宽(最大为100MHz)。

每个CC的最大带宽为20 MHz。

为了高效地利用零碎的频谱,CA支持不同CC之间的聚合(如图1)

·         相同或不同带宽的CCs

·         同一频带内,邻接或非邻接的CCs

·         不同频带内的CCs 


      从基带(baseband)实现角度来看,这几种情况是没有区别的。这主要影响RF实现的复杂性。

      CA的另一个动力来自与对异构网络(heterogeneous network)的支持。后续会在跨承载调度(cross-carrier scheduling)中对异构网络进行介绍。

2.仿真效果预览

matlab2022a仿真结果如下:

 

3.MATLAB核心程序

for i = 1:length(Nums)iPF_times = 100;%m为调度次数G        = Nums(i);%为UE个数CC       = 3; %个数T        = Twind;Rbs      = zeros(G,CC,PF_times);   %矩阵s为每次调度RB所分配的UERates    = zeros(G,G);            %整个调度过程每个UE所获得的速率Avg_rate = ones(1,G,PF_times+1);  %每个UE所获得的平均速率Rand_rate= [];Sum_rate = [];%根据用户在CC上的路径损耗进行分组%我们建设CC坐标为,用户坐标随时产生XY1      = [100,200];XY2      = [300,100];XY3      = [200,400];XY       = 1000*rand(2,G);SET      = [];%定义权重因子L        = CC;for j=1:Gdist1 = sqrt((XY(1,j)-XY1(1))^2 + (XY(2,j)-XY1(2))^2); dist2 = sqrt((XY(1,j)-XY2(1))^2 + (XY(2,j)-XY2(2))^2);dist3 = sqrt((XY(1,j)-XY3(1))^2 + (XY(2,j)-XY3(2))^2);dist  = [dist1,dist2,dist3];%不同载波频率衰减不一样PL1(j)   = 58.83+37.6*log(10*dist1/1e3) + 21*log(10*f1);PL2(j)   = 58.83+37.6*log(10*dist2/1e3) + 21*log(10*f2);PL3(j)   = 58.83+37.6*log(10*dist3/1e3) + 21*log(10*f3);[V,I]    = min([PL1(j),PL2(j),PL3(j)]);SET(j)   = I;%分组号Wk(j)    = L/G*dist(I)/Avg_rate(1,j,end);distt(j) = min(dist);endWk = Wk/max(Wk);%距离较大的定义为郊区[VV,II] = sort(distt);Ijiq    = II(round((1-ker)*G):G);Izx     = II(1:round((1-ker)*G)-1);for n=1:PF_times;  %调度次数rng(n);%初始化alphaalpha            = zeros(1,G);%侵略因子%生成随机速率信息Rand_rate(:,:,n) = randint(G,CC,[0 500]);  %pf调度%每个RB开始分配for jq = 1:CC;  t  = 1;if jq == 1;PL=PL1;end;if jq == 2;PL=PL2;end;if jq == 3;PL=PL3;end;for jG = 2:G; if Rand_rate(jG,jq,n)/Avg_rate(1,jG,n)>Rand_rate(t,jq,n)/Avg_rate(1,t,n) & PL>=300+50*rand;t = jG;endendRbs(t,jq,n) = G*rand;end %获得的速率Sum_rate(:,:,n) = Rbs(:,:,n)*Rand_rate(:,:,n)';   %整个调度过程每个UE所获得的速率Rates(:,:)  = Sum_rate(:,:,n)+Rates(:,:); %更新平均速率for k2=1:G;              if rand>0.2%得到服务Avg_rate(1,k2,n+1)=(1-1/T).*Avg_rate(1,k2,n); elseAvg_rate(1,k2,n+1)=(1-1/T).*Avg_rate(1,k2,n)+(1/T).*Sum_rate(k2,k2,n);endendendRates_=Wk*Rates;speed1(i) = sum(sum(Rates_(:,Ijiq)))/1e6;speed2(i) = sum(sum(Rates_(:,Izx)))/1e6;speed(i)  = speed1(i)+speed2(i);
end
01_181m

4.完整MATLAB

V

这篇关于m在LTE-A系统载波聚合下的资源分配算法的matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/382344

相关文章

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1