Opencv图像增强算法实现(直方图均衡化、Laplace、Log、Gamma)

本文主要是介绍Opencv图像增强算法实现(直方图均衡化、Laplace、Log、Gamma),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接: 

https://loopvoid.github.io/2017/02/21/Opencv%E5%9B%BE%E5%83%8F%E5%A2%9E%E5%BC%BA%E7%AE%97%E6%B3%95%E5%AE%9E%E6%B3%95/

增强图像中的有用信息,它可以是一个失真的过程,其目的是要改善图像的视觉效果,针对给定图像的应用场合,有目的地强调图像的整体或局部特性,将原来不清晰的图像变得清晰或强调某些感兴趣的特征,扩大图像中不同物体特征之间的差别,抑制不感兴趣的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果,满足某些特殊分析的需要。

直方图均衡化图像增强

图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法
直方图拉伸直方图均衡化是两种最常见的间接对比度增强方法。
直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现。
直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强。

  • 优点:这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节。这种方法的一个主要优势是它是一个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大。
  • 缺点:缺点是它对处理的数据不加选择,它可能会增加背景杂讯的对比度并且降低有用信号的对比度;变换后图像的灰度级减少,某些细节消失;某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。
    彩色图像的直方图均衡化实现:

     

     
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;int main()
{Mat src = imread("elephant.jpg");Mat src_RGB[3], dst;split(src, src_RGB);for (int i = 0; i < 3; i++){equalizeHist(src_RGB[i], src_RGB[i]);}merge(src_RGB, 3, dst);imwrite("elephant_hist.jpg", dst);waitKey();return 0;
}

直方图均衡化前后对比如下:
直方图均衡化

Laplace图像增强

拉普拉斯算子可以增强局部的图像对比度。
Laplace 8邻域卷积核:
0 -1 0
-1 5 -1
0 -1 0
采用filter2D函数实现对图像的卷积:

  
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;int main()
{Mat src = imread("cow.jpg");Mat dst;Mat kernel = (Mat_<int>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);filter2D(src, dst, src.depth(), kernel);imshow("dst",dst);waitKey();return 0;
}

图像进行Laplace卷积前后对比如下:
Laplace变换

对数Log变换图像增强

对数变换可以将图像的低灰度值部分扩展,显示出低灰度部分更多的细节,将其高灰度值部分压缩,减少高灰度值部分的细节,从而达到强调图像低灰度部分的目的。变换方法:

s=c⋅logv(1+v⋅r)⟶r∈[0,1]s=c·logv⁡(1+v·r)⟶r∈[0,1]

对于不同的底数,底数越大,对低灰度部分的扩展就越强,对高灰度部分的压缩也就越强。

  
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;int main()
{Mat src = imread("darknight.jpg");Mat dst(src.size(), CV_32FC3);for (int i = 0; i < src.rows; i++){for (int j = 0; j < src.cols; j++){dst.at<Vec3f>(i, j)[0] = log(1 + src.at<Vec3b>(i, j)[0]);dstdst.at<Vec3f>(i, j)[1] = log(1 + src.at<Vec3b>(i, j)[1]);dst.at<Vec3f>(i, j)[2] = log(1 + src.at<Vec3b>(i, j)[2]);}}normalize(dst, dst, 0, 255, CV_MINMAX);convertScaleAbs(dst, dst);imshow("darknight_log.jpg",dst);waitKey();return 0;
}

对图片进行Log变换前后对比如下:
Log变换

伽马变换的图像增强

伽马变换主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。变换公式就是对原图像上每一个像素值做乘积运算:

s=crγ⟶r∈[0,1]s=crγ⟶r∈[0,1]

伽马变换对于图像对比度偏低,并且整体亮度值偏高(对于于相机过曝)情况下的图像增强效果明显。

  
#include "opencv2/opencv.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace std;
using namespace cv;
#define Gamma 3int main()
{Mat src = imread("src.jpg");Mat dst(src.size(), CV_32FC3);for (int i = 0; i < src.rows;i++){for (int j = 0; j < src.cols; j++){dst.at<Vec3f>(i, j)[0] = pow(src.at<Vec3b>(i, j)[0], Gamma);dst.at<Vec3f>(i, j)[1] = pow(src.at<Vec3b>(i, j)[1], Gamma);dst.at<Vec3f>(i, j)[2] = pow(src.at<Vec3b>(i, j)[2], Gamma);}}normalize(dst, dst, 0, 255, CV_MINMAX);convertScaleAbs(dst, dst);waitKey();return 0;
}

图像进行Laplace卷积前后对比如下:
伽马变换

原文链接:https://loopvoid.github.io/2017/02/21/Opencv%E5%9B%BE%E5%83%8F%E5%A2%9E%E5%BC%BA%E7%AE%97%E6%B3%95%E5%AE%9E%E6%B3%95/

如有侵权请联系删除,更多视觉图像处理相关内容请关注公众号:OpenCV与AI深度学习

这篇关于Opencv图像增强算法实现(直方图均衡化、Laplace、Log、Gamma)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/381948

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2