CTNet:西工大、哈工大、中南大学和台湾清华大学一种交叉 Transformer 的图像去噪方法...

本文主要是介绍CTNet:西工大、哈工大、中南大学和台湾清华大学一种交叉 Transformer 的图像去噪方法...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关注公众号,发现CV技术之美

99d0bc8795efcd591b60e4db9941ffd7.png

  • 作者:田春伟,郑梦华,左旺孟,张师超,张艳宁,林嘉文

  • 单位:西北工业大学、空天地海一体化大数据应用技术国家工程实验室、哈尔滨工业大学、中南大学、台湾国立清华大学

  • 论文题目:A cross Transformer for image denoising

  • 论文链接:https://arxiv.org/abs/2310.10408

  • 项目链接:https://github.com/hellloxiaotian/CTNet

摘要

深度卷积神经网络 (Convolutional Neural Networks, CNNs) 依赖前向传播和反向传播获得显著的图像去噪性能。但如何通过 CNNs 获取有效的结构信息解决复杂场景的图像去噪问题是关键。作者们提出了一种交叉 Transformer 去噪卷积神经网络 (Cross Transformer denoising CNN, CTNet)用于获得复杂场景下清晰图像。

本方法包括三部分来抑制噪声:串行块、并行块和残差块 。串行块使用增强的残差架构深入搜索图像的结构信息以提高图像去噪性能。并行块使用三个异构网络来实现多层特征的多重交互来防止关键信息的丢失和增强去噪模型对复杂场景的适应性。通过交互Transformer以深度和广度搜索方式增强像素特征之间关系,提高图像去噪效果。最后使用残差块来重建图像。

实验结果表明提出的 CTNet 在定性分析和定量分析上已经获得好的去噪性能,并且适用于移动数字设备。相关代码能在https://github.com/hellloxiaotian/CTNet处被获取。

主要贡献:

  1. 采用深度和广度搜索以串并行方式来获得更多的结构信息,提高图像去噪性能。

  2. 利用三个并行异构网络实现多层特征交互,增强不同网络间的关系,以提高针去噪网络对复杂场景的适应性。

  3. 交叉 Transformer 技术可以根据像素关系提取显著性特征,从而优化去噪效果。

方法

网络结构如图1所示:

35b56e7754240362f97083063a386c02.png
图1. 交叉Transformer网络结构图

实验

本文提出的方法在Set12,BSD68,Urban100,CBSD68,Kodak24,McMaster,CC,SIDD和Mayo这九个基准数据上超过了很多流行的方法,如:DnCNN、ADNet和IPT等。更多的结构如表1到表8:

0eca02672633b24727faaf0791e4ceb1.png
表1 不同图像去噪方法在BSD68数据集上对于三种不同噪声等级(15、25和50)的PSNR结果
c7b67fb4c810b49b5ec7ee8ebc89ae0d.png
表2 不同图像去噪方法在Set12数据集上对于三种不同噪声等级(15、25和50)的PSNR结果
e825e02bfd75ae2a960adcd9744cea07.png
表3 不同图像去噪方法在Urban100数据集上对于三种不同等级噪声等级(15、25、50)的PSNR结果
654c4047d3977c8501fe549a1515635b.png
表4 不同图像去噪方法在CBSD68数据集上对于五种不同等级噪声等级(15、25、35、50和75)的PSNR结果
3113777689756c3d3393181451d2f2b2.png
表5 不同图像去噪方法在Kodak24数据集上对于五种不同噪声等级(15、25、35、50和75)的PSNR结果
a168e5020ca49825e5bea8cfe2b0f708.png
表6 不同图像去噪方法在McMaster数据集上对于五种不同噪声等级(15、25、35、50和75)的PSNR结果
e24190410b0a908aa7cacae58b28e9d6.png
表7 不同图像去噪方法在CC数据集上对于真实噪声的PSNR结果
ba0acf163dff53d6c1cdf3d112306d18.png
表8 不同图像去噪方法在SIDD和Mayo数据集上对于智能手机图像和CT图像的PSNR结果

此外,本文也制作了4组可视化结果来验证本文提出的方法的有效性,如图2-图5所示:

a1360988e93e10fb6da9add111f996b5.png
图2 不同图像去噪方法在BSD68灰度图像(噪声等级为50)上的去噪效果图。(a) 原图(b) 噪声图像 (c) ADNet/27.13dB (d) DnCNN/27.92dB (e) FFDNet/28.04dB (f) CTNet/28.16dB.
cca835c3ef6126bcf3dcca024c43c683.png
图3 不同图像去噪方法在Set12灰度图像(噪声等级为25)上的去噪效果图。(a) 原图 (b)噪声图像 (c) ADNet/32.68dB (d) DnCNN/32.44dB (e) FFDNet/32.68 dB (f) CTNet/32.87dB.
1907dde9ee227fddcad2b250a8fea743.png
图4 不同图像去噪方法在CBSD68彩色图像(噪声等级为35)上的去噪效果图。(a)原图 (b) 噪声图像 (c) ADNet/28.84dB (d) DnCNN/29.33dB (e) FFDNet/29.30 dB (f) CTNet/29.90 dB.
d680c214dd5f554fa88597cd69239758.png
图5 不同图像去噪方法在McMaster彩色图像(噪声等级为50)上的去噪效果图。(a)原图 (b) 噪声图像(c) ADNet/23.70 dB (d) DnCNN/24.07 dB (e) FFDNet/25.56 dB (f) CTNet/26.39 dB.

结论

在本文中,作者们提出了一种交叉Transformer去噪卷积神经网络(CTNet)来实现图像去噪。

本方法包括三部分来抑制噪声:串行块、并行块和残差块。串行模块通过深度搜索引导增强的残差架构来获得更准确的结构信息。避免关键信息的损失,并行模块根据广度搜索的思想设计了三个并行的异构网络,实现了特征之间的多重交互,提取了更丰富的细节信息。

此外,Transformer机制被嵌入到串行模块和并行模块中,以有效地提取互补的显著性信息来去除噪声。最后,使用残差块来重建清晰的图像。

根据大量的实验分析,所提出的方法非常适合复杂场景的图像去噪。它不仅适用于移动数字设备,而且对医疗成像设备也很有用。此外,作者们将在未来的工作中研究没有参照图像的图像去噪任务。

030e53267b0c68353825b75786fb66a2.jpeg

END

欢迎加入「图像去噪交流群👇备注:去噪

dac222e7ac534ff1447e4580dcd75149.png

这篇关于CTNet:西工大、哈工大、中南大学和台湾清华大学一种交叉 Transformer 的图像去噪方法...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/381629

相关文章

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【VUE】跨域问题的概念,以及解决方法。

目录 1.跨域概念 2.解决方法 2.1 配置网络请求代理 2.2 使用@CrossOrigin 注解 2.3 通过配置文件实现跨域 2.4 添加 CorsWebFilter 来解决跨域问题 1.跨域概念 跨域问题是由于浏览器实施了同源策略,该策略要求请求的域名、协议和端口必须与提供资源的服务相同。如果不相同,则需要服务器显式地允许这种跨域请求。一般在springbo

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出

AI(文生语音)-TTS 技术线路探索学习:从拼接式参数化方法到Tacotron端到端输出 在数字化时代,文本到语音(Text-to-Speech, TTS)技术已成为人机交互的关键桥梁,无论是为视障人士提供辅助阅读,还是为智能助手注入声音的灵魂,TTS 技术都扮演着至关重要的角色。从最初的拼接式方法到参数化技术,再到现今的深度学习解决方案,TTS 技术经历了一段长足的进步。这篇文章将带您穿越时

模版方法模式template method

学习笔记,原文链接 https://refactoringguru.cn/design-patterns/template-method 超类中定义了一个算法的框架, 允许子类在不修改结构的情况下重写算法的特定步骤。 上层接口有默认实现的方法和子类需要自己实现的方法

使用JS/Jquery获得父窗口的几个方法(笔记)

<pre name="code" class="javascript">取父窗口的元素方法:$(selector, window.parent.document);那么你取父窗口的父窗口的元素就可以用:$(selector, window.parent.parent.document);如题: $(selector, window.top.document);//获得顶级窗口里面的元素 $(

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法   消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法 [转载]原地址:http://blog.csdn.net/x605940745/article/details/17911115 消除SDK更新时的“