数据分析:智能企业七步曲(一)

2023-11-10 07:54

本文主要是介绍数据分析:智能企业七步曲(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  原创: MicroStrategy微策略中国

  作者:数据杰论

  时间走到2018年最后一个季度,过去几年热炒的大数据概念正在各行各业开始落地并展开实际应用,核心是关注数据如何能为企业带来价值。因此,数据分析及其种种实现手段不断被提上企业信息化建设议事日程,目标是使得决策和管理不再是过去那种老板主观凭经验任性而为,而是依据客观的数据来辅助甚至主导决策,让数据赋能企业,并终究成其为智能企业。我想大家对此趋势都会表示赞同。

  但是,到一个个具体的企业实际环境中,甲方的朋友们可能还是有大量的现实困惑:

  我们公司小,数据少,大家没这个意识…

  我们的业务人员都喜欢传统方式独立作战,我们IT给的数据分析系统人家不用啊…

  我们的同事都有数据意识了,但是系统出的数据老是不准,没法用…

  我们的业务体系很杂,系统多达50套,数据汇总和变现速度跟不上业务需要…

  我们构建了数据分析平台,性能也不错,但是成千上万的用户进来如何可控并安全的让他们使用数据,这点很头疼…

  道理和方向大家都知道,都知道数据是金矿,都希望在金矿上面有所作为。但具体到实际场景中,却总是犯难,颇有些“道理都懂,可仍然过不好这一生”的感慨。

  在数聚看来,这当中有很大一部分是因为企业为自己设置了一个不符合现阶段情况和发展需求的目标,缺乏方法来指导数据分析体系建设引起的。每个企业都有自己特有的“企情”,别的企业所做的事情和使用的方法不见得适用于现阶段的本企业。试想一个稍微夸张的例子,一个100人的小型企业,如果就要搞大而全的数据仓库、搞数据平台,显然是有些超出阶段性能力和需求的。从100人规模到10000人规模,可能中间有多个中间状态需要一步步走过去,比如个人级的数据分析方案、小组/部门级的数据分析方案、数据分析团队的成立和完善、数据分析师团队的引入、数据仓库的构建和完善、数据生态和意识的建设等等环节,不一而足。人不能一口吃成胖子,企业也一样。

  正因为每个企业都有不同的阶段性情况和需求,我们总结不同阶段企业的特点,就可以描绘出企业从小到大、从简单到复杂、从零散到体系的多阶段全貌和数据建设生命周期,每个阶段可以描述出它的特点、适应的企业发展阶段、升级到下一阶段的前置条件和核心要素等。每个企业都可以在这个全貌中找到自己所处的阶段,并参考此多阶段理论,根据企业发展需求找到自己下一步的目标,用之匹配企业下一阶段的需求升级,指导数据分析体系的增量式建设。

  我把这个多阶段全貌分为7个阶段,从最开始的无分析或个人分析到最终理想的数据分析生态体系。这个过程也是企业从无数据分析指导,到数据分析的价值如血液般赋能企业生态各个角落的过程。企业提升自己的数据分析发展阶段的过程,也是在智能企业的建设过程中逐步前进的过程。

  这7个阶段(或级别)分别是:个人级、部门级、企业级、体系级、可控级、信任级以及生态级。我们后续会陆续对这7个阶段进行探讨。

  这七个阶段主要从两个维度进行区分:

  其一,数据分析的采用率和普及度。一个显而易见的指标就是企业里面有多少人真的在使用数据分析支持业务需求。

  其二,数据分析的可靠性。可靠性有两个层面的意思。一个是数据是否准确可靠,不能是错误的数据或有歧义的数据;另一个是数据分析对业务使用价值的可靠性,如果得出的数据结论对业务没有价值,即准确但没用,也是白搭,这个涉及对业务的理解。企业需要的是行动化建议。

  为了方便称呼,我把这个7个阶段的概念称之为“智能企业七步曲”。

  不过首先,什么是智能企业?我们列出几条定义式描述:

  “智能企业”是彻底的数据驱动型组织

  “智能企业”有强大的数据基因,并且将数据变现为利润和增长

  “智能企业”基于各类企业数据资产,构建可信任的数据底座,将数据分析和价值如血液一样流淌到企业经营的每一个参与者

  首先,意识和认知层面,数据分析在智能企业中不是一个成本中心(Cost Center),而是增长中心(Growth Center)。智能企业,首先从最高层管理者开始,都有着极为强烈的数据化管理意识和思维能力,是数据驱动增长理念的坚定捍卫者。在组织的管理和运营中,不断深化组织每一个参与者的数据意识,使之成为企业文化的一部分。数据分析不再是传统信息IT部门每年例行公事花预算的事情,而是整个组织的共同追求和实践。

  其次,前端价值交付层面,智能企业拥有将数据转换为利润和增长的能力。智能企业能够很好的将数据技术(DT)与业务需求合二为一,不再是过去技术不懂业务、业务不懂技术的尴尬局面,逐渐出现数据技术和业务都理解的融合性人才和团队。甚至,业务会逐渐的由数据来指导和开展,举个栗子,在零售门店场景下,有价值的数据分析会拆解业务数据,并主动告诉店长门店经营出现问题的原因在哪一个方面(因子分析),可能是复购率问题,可能是流量转换率问题,也可能是库存和周转问题等等,并加以量化和推出改善性行动建议,进而引导店长和管理者在相关方面进行针对性行动。

  最后,后端基础设施层面,智能企业拥有强大的数据中台和数据底座,底气十足。基础设施之于前端价值交付,如深厚的地基之于万丈高楼。企业上到一定规模,都有大大小小少至七八套,多至数十套上百套的业务支撑系统。智能企业能够建立强有力的数据管道,将各系统数据融合统一并进行语义级别管理,形成统一的数据描述和口径定义。任它数据千千万,我只听见一种声,这便是可信任的数据底座。随后,架构于该底座之上的数据中台能够像心脏之于千万个毛细血管一样,将数据输送到各个需要数据支撑的前端业务单元,最终形成完善的数据生态。

  聊完智能企业的一些基本点以及智能企业的7步理论,我们下一步将就智能企业的7步分别进行描述。鉴于内容略微过长,我们将分为3个子文章逐段发送,敬请期待和指正。

这篇关于数据分析:智能企业七步曲(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/381358

相关文章

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个