Hadoop企业开发案例调优场景

2024-09-09 17:58

本文主要是介绍Hadoop企业开发案例调优场景,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

需求

(1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。
(2)需求分析:
1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster
平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3)

HDFS参数调优

(1)修改:hadoop-env.sh

export HDFS_NAMENODE_OPTS="-Dhadoop.security.logger=INFO,RFAS -Xmx1024m"export HDFS_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS -Xmx1024m"

(2)修改hdfs-site.xml

<!-- NameNode有一个工作线程池,默认值是10 -->
<property><name>dfs.namenode.handler.count</name><value>21</value>
</property>

(3)修改core-site.xml

<!-- 配置垃圾回收时间为60分钟 -->
<property><name>fs.trash.interval</name><value>60</value>
</property>

(4)分发配置

[lytfly@hadoop102 hadoop]$ xsync hadoop-env.sh hdfs-site.xml core-site.xml

MapReduce参数调优

(1)修改mapred-site.xml

<!-- 环形缓冲区大小,默认100m -->
<property><name>mapreduce.task.io.sort.mb</name><value>100</value>
</property><!-- 环形缓冲区溢写阈值,默认0.8 -->
<property><name>mapreduce.map.sort.spill.percent</name><value>0.80</value>
</property><!-- merge合并次数,默认10个 -->
<property><name>mapreduce.task.io.sort.factor</name><value>10</value>
</property><!-- maptask内存,默认1g; maptask堆内存大小默认和该值大小一致mapreduce.map.java.opts -->
<property><name>mapreduce.map.memory.mb</name><value>-1</value><description>The amount of memory to request from the scheduler for each    map task. If this is not specified or is non-positive, it is inferred from mapreduce.map.java.opts and mapreduce.job.heap.memory-mb.ratio. If java-opts are also not specified, we set it to 1024.</description>
</property><!-- matask的CPU核数,默认1个 -->
<property><name>mapreduce.map.cpu.vcores</name><value>1</value>
</property><!-- matask异常重试次数,默认4次 -->
<property><name>mapreduce.map.maxattempts</name><value>4</value>
</property><!-- 每个Reduce去Map中拉取数据的并行数。默认值是5 -->
<property><name>mapreduce.reduce.shuffle.parallelcopies</name><value>5</value>
</property><!-- Buffer大小占Reduce可用内存的比例,默认值0.7 -->
<property><name>mapreduce.reduce.shuffle.input.buffer.percent</name><value>0.70</value>
</property><!-- Buffer中的数据达到多少比例开始写入磁盘,默认值0.66。 -->
<property><name>mapreduce.reduce.shuffle.merge.percent</name><value>0.66</value>
</property><!-- reducetask内存,默认1g;reducetask堆内存大小默认和该值大小一致mapreduce.reduce.java.opts -->
<property><name>mapreduce.reduce.memory.mb</name><value>-1</value><description>The amount of memory to request from the scheduler for each    reduce task. If this is not specified or is non-positive, it is inferredfrom mapreduce.reduce.java.opts and mapreduce.job.heap.memory-mb.ratio.If java-opts are also not specified, we set it to 1024.</description>
</property><!-- reducetask的CPU核数,默认1个 -->
<property><name>mapreduce.reduce.cpu.vcores</name><value>2</value>
</property><!-- reducetask失败重试次数,默认4次 -->
<property><name>mapreduce.reduce.maxattempts</name><value>4</value>
</property><!-- 当MapTask完成的比例达到该值后才会为ReduceTask申请资源。默认是0.05 -->
<property><name>mapreduce.job.reduce.slowstart.completedmaps</name><value>0.05</value>
</property><!-- 如果程序在规定的默认10分钟内没有读到数据,将强制超时退出 -->
<property><name>mapreduce.task.timeout</name><value>600000</value>
</property>

(2)分发配置

[lytfly@hadoop102 hadoop]$ xsync mapred-site.xml

Yarn参数调优

(1)修改yarn-site.xml配置参数

<!-- 选择调度器,默认容量 -->
<property><name>yarn.resourcemanager.scheduler.class</name><value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property><!-- ResourceManager处理调度器请求的线程数量,默认50;如果提交的任务数大于50,可以增加该值,但是不能超过3台 * 4线程 = 12线程(去除其他应用程序实际不能超过8) -->
<property><name>yarn.resourcemanager.scheduler.client.thread-count</name><value>8</value>
</property><!-- 是否让yarn自动检测硬件进行配置,默认是false,如果该节点有很多其他应用程序,建议手动配置。如果该节点没有其他应用程序,可以采用自动 -->
<property><name>yarn.nodemanager.resource.detect-hardware-capabilities</name><value>false</value>
</property><!-- 是否将虚拟核数当作CPU核数,默认是false,采用物理CPU核数 -->
<property><name>yarn.nodemanager.resource.count-logical-processors-as-cores</name><value>false</value>
</property><!-- 虚拟核数和物理核数乘数,默认是1.0 -->
<property><name>yarn.nodemanager.resource.pcores-vcores-multiplier</name><value>1.0</value>
</property><!-- NodeManager使用内存数,默认8G,修改为4G内存 -->
<property><name>yarn.nodemanager.resource.memory-mb</name><value>4096</value>
</property><!-- nodemanager的CPU核数,不按照硬件环境自动设定时默认是8个,修改为4个 -->
<property><name>yarn.nodemanager.resource.cpu-vcores</name><value>4</value>
</property><!-- 容器最小内存,默认1G -->
<property><name>yarn.scheduler.minimum-allocation-mb</name><value>1024</value>
</property><!-- 容器最大内存,默认8G,修改为2G -->
<property><name>yarn.scheduler.maximum-allocation-mb</name><value>2048</value>
</property><!-- 容器最小CPU核数,默认1个 -->
<property><name>yarn.scheduler.minimum-allocation-vcores</name><value>1</value>
</property><!-- 容器最大CPU核数,默认4个,修改为2个 -->
<property><name>yarn.scheduler.maximum-allocation-vcores</name><value>2</value>
</property><!-- 虚拟内存检查,默认打开,修改为关闭 -->
<property><name>yarn.nodemanager.vmem-check-enabled</name><value>false</value>
</property><!-- 虚拟内存和物理内存设置比例,默认2.1 -->
<property><name>yarn.nodemanager.vmem-pmem-ratio</name><value>2.1</value>
</property>

(2)分发配置

[lytfly@hadoop102 hadoop]$ xsync yarn-site.xml

执行程序

(1)重启集群

[lytfly@hadoop102 hadoop-3.1.4]$ sbin/stop-yarn.sh
[lytfly@hadoop103 hadoop-3.1.4]$ sbin/start-yarn.sh

(2)执行WordCount程序

[lytfly@hadoop102 hadoop-3.1.4]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.1.4.jar wordcount /input /output

(3)观察Yarn任务执行页面

http://hadoop103:8088/cluster/apps


 

这篇关于Hadoop企业开发案例调优场景的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1151879

相关文章

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2