PSP - HHblits 算法搜索 BFD 与 UniRef30 的结果分析 (bfd_uniref_hits.a3m)

2023-11-10 05:41

本文主要是介绍PSP - HHblits 算法搜索 BFD 与 UniRef30 的结果分析 (bfd_uniref_hits.a3m),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132047940

HHblits
MMseqs2HHblits 的算法比较:

  • 蛋白质序列搜索算法 MMseqs2 与 HHblits 的搜索结果差异
  • HHblits 算法搜索 BFD 与 UniRef30 的结果分析

Paper: HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment

  • 2011.12 Nature Methods

HHblits 是一种基于 HMM-HMM 对齐的迭代蛋白质序列搜索工具,可以快速、灵敏、准确地找到数据库中与查询序列相似的蛋白质序列。HHblits 的主要特点有:

  • 使用隐马尔可夫模型(HMM)来表示查询序列和数据库序列,而不是使用简单的氨基酸序列。HMM 是一种统计模型,可以捕捉序列的进化变化和保守区域,从而提高序列相似性的检测能力。
  • 使用一种离散化的预过滤器,可以快速地筛选出与查询序列有潜在相似性的数据库序列,从而减少了 HMM-HMM 对齐的计算量。这种预过滤器可以将搜索时间提高 2500 倍,而不损失搜索灵敏度。
  • 使用迭代的方法,可以利用上一轮搜索得到的多序列比对(MSA)来构建更精确的查询 HMM,来进行下一轮搜索。这样可以不断地扩展搜索范围,找到更多的相关序列。

bfd_uniref_hits.a3m 中,以 UniRef100 开头的序列描述,即来源于 UniRef30 数据库,即:

>UniRef100_A0A2X3SLP5 Uncharacterized protein n=2 Tax=Streptococcus equi TaxID=1336 RepID=A0A2X3SLP5_STRSZ
-TNtsSQEVDQVAQALELMFDNNVSTSNFKKYVNNNFSDSEIAIAELELESRISNSrsefrvawnemggCIAGKIRDEFFAMISVGTIVKYAQKKAWKELALVVLKFVKANGLKTNAIIVAGQLALWAVQCG

a3m 文件格式是用于表示蛋白质序列比对的文本格式,是 FASTA 格式的一种扩展。在 a3m 文件格式中,蛋白质序列用单个字母表示,其中,匹配用大写字母表示,删除用横线(-) 表示,插入用小写字母表示,去掉小写字母,只保留大写字母与横线(-) ,则长度与目标序列相同。

其他序列就是来源于 BFD,以 SRR 开头的数量较多,即:

>SRR5690606_14355373 
-----QIEELAAQLEFLMEEALiiENGERTfdfEKIENEFgkeVKDEIKMLTVDAQVWqvqpgaitlaanqPWKDCMVGAIKDHFGvALVTAaleGGLWAYLEKKAYKEAAKLLVKF----AVGTNAVGIAGTLIYYGGKCT
...
>SoimicmetaTmtLPB_FD_contig_61_1212631_length_209_multi_1_in_0_out_0_1 # 2 # 76 # 1 # ID=3042713_1;partial=10;start_type=Edge;rbs_motif=None;rbs_spacer=None;gc_cont=0.693
---NEEIEQLAADLEFLMEEAAiydEKGKVVnfdfDLLEERFgYVLELEMLKEEIEAYnattegd--NDeiqlfswksCMISALKGHFGvALIEValtGGLWSYLEKKAYKEAAKLLLKI----GIEGNVIGLTAFLTWYSVDCI
...
>APFre7841882654_1041346.scaffolds.fasta_scaffold441692_2 # 291 # 482 # 1 # ID=441692_2;partial=01;start_type=ATG;rbs_motif=AGGAG;rbs_spacer=5-10bp;gc_cont=0.609
-EIPLEAqgisiFGANHCDGareserliahelAHQWFgnsvtakrwrhiwlhegFACYAEWLWSEHSGdrsaDEWAhhfHEKLASSPQDLLLADPGPRDMFddrvykrgalTLHVLRRTLGDENFFALLKDWTSRHRHGSAVTD------DFTGLAANYTDQSLRPLWDAWLYS--TEVPALDAESX-------------------------------------------------------------------------------------------------------------------
...

因此,使用 MMseqs2 分别搜索 BFD 和 UniRef30,再合并,与使用 HHblits 一起搜索两个库的效果相同,同时也可以计算不同搜索算法的结果差异,即:

  • 测试序列来源于 CASP15 提供的官方序列。
  • MMseqs2 的搜索参数,num_iterations 是 3,sensitivity 是 8,即 i3s8,其余默认。
  • HHblits 使用 AF2 默认的搜索工具,数据库也保持一致。

即:

Img

源码如下:

#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2022. All rights reserved.
Created by C. L. Wang on 2023/8/1
"""
import osfrom myutils.project_utils import read_file
from root_dir import DATA_DIRclass BfdUniref30Overlap(object):"""计算 MMseqs2 与 HHblits 搜索结果之间的重叠度"""def __init__(self):pass@staticmethoddef count_seqs(data_lines):return len(data_lines) // 2 - 1def split_hhblits(self, data_lines):"""拆分 Uniref30 与 BFD 数据"""n = len(data_lines)n = n // 2 * 2u_desc_list, u_seq_list = [], []b_desc_list, b_seq_list = [], []for i in range(2, n, 2):desc = data_lines[i][1:]seq = data_lines[i+1]seq = seq.replace("-", "")if desc.startswith("UniRef100"):desc = desc.split(" ")[0]u_desc_list.append(desc)u_seq_list.append(seq)else:items = desc.split("|")if len(items) > 1:desc = items[1]b_desc_list.append(desc)b_seq_list.append(seq)unique_u_seq = len(list(set(u_seq_list)))unique_u_desc = len(list(set(u_desc_list)))print(f"[Info] unique uniref30 desc: {unique_u_desc} / {len(u_desc_list)}")print(f"[Info] unique uniref30 seqs: {unique_u_seq} / {len(u_seq_list)}")unique_b_seq = len(list(set(b_seq_list)))unique_b_desc = len(list(set(b_desc_list)))print(f"[Info] unique bfd desc: {unique_b_desc} / {len(b_desc_list)}")print(f"[Info] unique bfd seqs: {unique_b_seq} / {len(b_seq_list)}")return u_desc_list, u_seq_list, b_desc_list, b_seq_listdef process(self, uniref30_path, bfd_path, hhblits_path):assert os.path.isfile(uniref30_path) and os.path.isfile(bfd_path) and os.path.isfile(hhblits_path)print(f"[Info] mmseqs uniref30: {uniref30_path}")print(f"[Info] mmseqs bfd: {bfd_path}")print(f"[Info] hhblits bfd and uniref30: {hhblits_path}")uniref30_lines = read_file(uniref30_path)bfd_lines = read_file(bfd_path)hhblits_lines = read_file(hhblits_path)print(f"[Info] uniref30: {self.count_seqs(uniref30_lines)}, bfd: {self.count_seqs(bfd_lines)}, "f"hhblits: {self.count_seqs(hhblits_lines)}")# ---------- 统计 MMseqs2 Uniref30 ---------- #u_desc_list, u_seq_list = [], []n = len(uniref30_lines)n = n // 2 * 2for i in range(2, n, 2):u_name = uniref30_lines[i][1:].split("\t")[0]u_seq = uniref30_lines[i+1].replace("-", "")assert u_name.startswith("UniRef100")u_desc_list.append(u_name)u_seq_list.append(u_seq)assert len(u_desc_list) == self.count_seqs(uniref30_lines)unique_u_seq = len(list(set(u_seq_list)))unique_u_desc = len(list(set(u_desc_list)))print(f"[Info] unique uniref30 desc: {unique_u_desc} / {len(u_desc_list)}")print(f"[Info] unique uniref30 seqs: {unique_u_seq} / {len(u_seq_list)}")# ---------- 统计 MMseqs2 Uniref30 ---------- ## ---------- 统计 BFD Uniref30 ---------- #b_desc_list, b_seq_list = [], []n = len(bfd_lines)n = n // 2 * 2for i in range(2, n, 2):b_name = bfd_lines[i][1:].split("\t")[0]b_seq = bfd_lines[i+1].replace("-", "")b_desc_list.append(b_name)b_seq_list.append(b_seq)assert len(b_desc_list) == self.count_seqs(bfd_lines)unique_b_seq = len(list(set(b_seq_list)))unique_b_desc = len(list(set(b_desc_list)))print(f"[Info] unique bfd desc: {unique_b_desc} / {len(b_desc_list)}")print(f"[Info] unique bfd seqs: {unique_b_seq} / {len(b_seq_list)}")# ---------- 统计 BFD Uniref30 ---------- ## ---------- 统计 HHblits BFD and Uniref30 ---------- #hu_desc_list, hu_seq_list, hb_desc_list, hb_seq_list = self.split_hhblits(hhblits_lines)assert len(hu_desc_list) + len(hb_desc_list) == self.count_seqs(hhblits_lines)# ---------- 统计 HHblits BFD and Uniref30 ---------- ## ---------- 统计 交集 ---------- #num_u_desc_is = len(set(u_desc_list).intersection(set(hu_desc_list)))print(f"[Info] uniref30 desc intersection: {num_u_desc_is}")num_u_seqs_is = len(set(u_seq_list).intersection(set(hu_seq_list)))print(f"[Info] uniref30 seqs intersection: {num_u_seqs_is}")num_b_desc_is = len(set(b_desc_list).intersection(set(hb_desc_list)))print(f"[Info] bfd desc intersection: {num_b_desc_is}")num_b_seqs_is = len(set(b_seq_list).intersection(set(hb_seq_list)))print(f"[Info] bfd seqs intersection: {num_b_seqs_is}")# ---------- 统计 交集 ---------- ## ---------- 统计 总数 ---------- #unique_mmseqs_seqs = list(set(u_seq_list + b_seq_list))unique_hhblits_seqs = list(set(hu_seq_list + hb_seq_list))print(f"[Info] unique_mmseqs_ses: {len(unique_mmseqs_seqs)}")print(f"[Info] unique_hhblis_ses: {len(unique_hhblits_seqs)}")# ---------- 统计 总数 ---------- #def main():fasta_name = "T1104-D1_A117"# fasta_name = "T1137s8-D1_A251"# fasta_name = "T1188-D1_A573"# fasta_name = "T1157s1_A1029"uniref30_path = os.path.join(DATA_DIR, "overlap", fasta_name, f"{fasta_name}-uniref30-i3s8.a3m")bfd_path = os.path.join(DATA_DIR, "overlap", fasta_name, f"{fasta_name}-bfd-i3s8.a3m")hhblits_path = os.path.join(DATA_DIR, "overlap", fasta_name, "bfd_uniref_hits.a3m")buo = BfdUniref30Overlap()buo.process(uniref30_path, bfd_path, hhblits_path)if __name__ == "__main__":main()

这篇关于PSP - HHblits 算法搜索 BFD 与 UniRef30 的结果分析 (bfd_uniref_hits.a3m)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380690

相关文章

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S