【LLMs】从大语言模型到表征再到知识图谱

2023-11-10 05:21

本文主要是介绍【LLMs】从大语言模型到表征再到知识图谱,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从大语言模型到表征再到知识图谱

  • InstructGLM
  • LLM如何学习拓扑?
  • 构建InstructGLM
  • 泛化InstructGLM
  • 补充
  • 参考资料

2023年8月14日,张永峰等人的论文《Natural Language is All a Graph Needs》登上arXiv街头,轰动一时!本论文概述了一个名为 InstructGLM的模型,该模型进一步证明了 图表示学习的未来包括大型语言模型(LLM)和图神经网络(GNN)。它描述了一种单独使用指令调整来teach语言模型文本属性图(text-attributed graph, TAG)的结构和语义的方法。经过指令微调的 Flan-T5和 Llama-7b能够在多个基准上实现引用 图的节点分类和链接预测任务的最先进性能: obgn-arxiv、 CoRa和 PubMed。图的结构结合节点的特点用通俗易懂的英语描述。在这两项任务中都使用了许多提示。

Natural Language is All a Graph Needs

InstructGLM

Natural Language is all a Graph Needs的作者描述了一个名为InstructGLM的模型,与GPT4Graph(使用图文件格式而非计划语言进行微调)等最近的努力相比,该模型开拓了新的领域,证明可以通过对引文图的结构[可选]及其特征的描述来指导对LLM(如谷歌的Flan-T5)进行微调,以训练其通过提示工程执行图机器学习任务,如节点分类和链接预测。

可以在下面看到使用的各种提示。主要的训练任务是节点分类,但作为多任务多提示指令调整的一部分,链接预测任务对其进行了扩展。任务有多种形式:只有结构,只有功能,两者都有有或没有边列表和结构描述,在过度平滑成为问题之前,可以扩展多达三跳(three hops)。
InstructGLM用法示意图
InstructGLM使用多任务学习应用于大型语言模型(LLM)的指令微调

InstructGLM架构
InstructionGLM的体系结构。唯一的“trick”是为节点ID使用特殊的令牌。否则,它只会向LLama或Flan-T5解释如何进行图形机器学习……

InstructGLM不需要GNN就可以实现最先进的性能,对引文网络中的节点进行分类并预测引文,这真的很酷。文本属性图(Text Attributed Graphs , TAG)是编码文本构成节点特征的图。该模型的一个方面是,除了简单的指令微调之外,它还扩展了LLM的词汇表为每个唯一的节点创建了一个新的令牌。在考虑结果时,请记住他们在OGB基准测试中使用的节点特征是稀疏的:Bag-of-Words(BoW)或TF-IDF。正确的节点特征编码可以显著提高性能

LLM如何学习拓扑?

个人觉得一个大型语言模型能够推理拓扑结构是令人惊讶的!图邻接列表或遍历由矩阵表示,Tranformer架构中的注意力头也是如此。也许Transformer能够以这种方式推理并不奇怪。这个Stack Exchange的回答是“……注意力矩阵是对称的,自然地具有加权邻接矩阵的形式。”DGL文档将Transformers建模为GNNs,可以在下图中看到Jesse Vig的jessevig/bertviz Github project(colab)中的注意力头表示为一组多重矩阵。
LLM学习网络拓扑是否类似于Transformer学习其注意力头中的权重?想想很有趣,很想看到一个可视化!以LLM和知识图谱领域目前的发展速度,我们可能不需要等待太久.
attention heads

构建InstructGLM

论文中没有代码,但作者确实发布了他们用来微调Alpaca和Flan-T5的prompts。它们将以Python格式出现在GitHub Repo的下一篇文章(正在进行中)中。这使得该论文相对容易以粗略的形式复制。该论文暗示了该方法的广泛潜力,以及如何通过改进节点特征来提高性能,节点特征是像Bag of Words或TF-IDF这样的稀疏特征。我希望句子编码将比这些稀疏表示更强大。
Prompts

泛化InstructGLM

在第三篇文章中,我将把InstructionGLM扩展到引用图之外的数据集。我感兴趣的几个异构网络具有复杂的、半结构化的节点特征数据。在阅读这篇论文时,我想起了我们在创业公司Deep Discovery时使用的一种对复杂节点功能进行编码的方法。它来自Megadon实验室的一个名为Ditto的实体匹配模型。Ditto[和Ditto Light]在2020年的一篇具有里程碑意义的论文《Deep Entity Matching with Pre-Trained Language Models》中进行了描述。它提供了一种相当通用的机制来对半结构化记录进行编码,以使用sentence transformer对其进行语句编码,从而实现实体匹配。
Deep Entity Matching with Pre-Trained Language Models
Sentence matchings
我想知道我是否可以像InstructGLM论文的作者那样,通过句子转换器使用交叉编码器(cross encoder via sentence transformer)来提高BoW/TF-IDF的性能,生成节点嵌入作为特殊节点token的特征。我希望这将使我能够将该方法应用于引文图之外的网络,例如我在实体和身份解析、财务合规、商业图和网络安全领域处理的网络。

补充

SentenceTransformers是一个Python框架,用于state-of-the-art的句子、文本和图像嵌入。在我们的论文《Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks》中描述了最初的工作。

Reimers N, Gurevych I. Sentence-bert: Sentence embeddings using siamese bert-networks[J]. arXiv preprint arXiv:1908.10084, 2019.
SentenceTransformers

您可以使用此框架来计算100多种语言的句子/文本嵌入。然后可以将这些嵌入与余弦相似性进行比较,以找到具有相似含义的句子。这对于语义-文本相似、语义搜索或转述挖掘非常有用。

该框架基于PyTorch和Transformers,提供了大量针对各种任务调整的预训练模型。此外,微调自己的模型也很容易。

参考资料

  1. Natural Language is All a Graph Needs
  2. Flan-T5
  3. Scaling Instruction-Finetuned Language Models
  4. LLaMA: Open and Efficient Foundation Language Models
  5. llm-graph-ai
  6. GPT4Graph: Can Large Language Models Understand Graph Structured Data ? An Empirical Evaluation and Benchmarking
  7. Cross-Encoders

这篇关于【LLMs】从大语言模型到表征再到知识图谱的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380598

相关文章

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}