CNN感性认识(二)——神经网络的优化

2023-11-10 03:40

本文主要是介绍CNN感性认识(二)——神经网络的优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考资料:http://neuralnetworksanddeeplearning.com/chap3.html

一、损失函数的优化
如果我们想处理分类问题,选择损失函数时,一个选项是交叉熵损失函数(the cross-entropy cost function)。交叉熵损失可以缓解之前提到的由于激活函数的输入落在函数偏左或偏右侧导致的导数过小而训练缓慢的问题。
原因在于:如果使用均方误差作为激活函数
这里写图片描述
对于单层神经网络单个神经元而言:
这里写图片描述
其中a是输出
交叉熵损失表示如下:这里写图片描述
此时:这里写图片描述
这里写图片描述
对多层的神经网络而言:
这里写图片描述
不需要对sigmoid函数求导,交叉熵损失的大小取决于输出误差,输出误差越小,交叉熵损失越小。
注意:交叉熵损失+sigmoid主要针对二分类问题
另一个有助于缓解学习缓慢问题的方法是:softmax+log-likelihood,主要针对多分类问题
softmax是sigmoid的推广+优化(不纯是推广,softmax在二分类情况下和sigmoid也不一样)
softmax表示为:这里写图片描述
这里写图片描述
这就能体现此消彼长的关系。
从softmax层的输出可以看作是一个概率分布,也就是说,一种情况的概率上升,其他情况的概率就下降。
对数似然函数:这里写图片描述
此时:这里写图片描述

二、过拟合和正则化
评估一个模型的正确方法是:看它能否对未训练过的数据进行正确的预测。
增加训练数据量是减轻过拟合的方式,另一种方法是减小网络的规模,但是规模较大的网络往往性能更强,因此我们并不愿意用这种方式。为了解决这个问题,我们采取正则化(regularization)的方式。
① L2正则化,权重衰减
最常用的正则化方法是:权重衰减(weight decay),也称为L2正则化(L2 regularization)。中心思想是:为损失函数增加一个正则项。
拿交叉熵损失函数举例,如果引入正则项:
这里写图片描述
这里写图片描述,它是正则化参数(regularization parameter)
总得来说,损失函数可以写成:这里写图片描述
直观地看,正则项存在的意义是让网络的权重比较小。
偏置的更新不受影响,权重的更新发生改变:
这里写图片描述
其中,这里写图片描述也被称为权重衰减(weight decay)。
② L1正则化(L1 regularization)
这里写图片描述

这里写图片描述
其中,sgn(w)是指w的符号。
③ Dropout
dropout不修改损失函数,而是修改网络本身。
假如我们随机地临时删去一半神经元,每使用一个mini batch的样本训练,都会先回复原来的神经元,重新选择神经元删除。
用完整的网络工作时,把未被隐藏过的神经元的权重减半。
dropout就好比将很多不同的神经网络叠加后平均。不同的神经网络有不同的过拟合倾向,用dropout可以减弱整体的过拟合。
④ 人为地扩大训练数据
比如说,把一个数字的图像稍微倾斜,就是一张完全不同的图像了。

三、优化梯度下降
采取基于势的梯度下降优化,该方法引入速度的概念,梯度改变时速度也改变。还引入摩擦项,倾向于减小速度。
原来的梯度下降更新方法:这里写图片描述
引入势后:这里写图片描述
这里写图片描述是控制系统衰减或阻力的超参数,它的值为1时,无阻力,它的值为0时,阻力为无穷大。这里写图片描述 可以让系统不会过调(overshooting),被称为动量系数(momentum co-efficient)
这一方法可以与反向传播同时使用,也不影响随机选择mini-batch,因此现在它被广泛地使用。

四、其他优化的方法
可以用修正线性神经元(ReLU)代替sigmoid神经元。
这里写图片描述
这里写图片描述
对比Sigmoid系主要变化有三点:①单侧抑制 ②相对宽阔的兴奋边界 ③稀疏激活性
总得来说,relu的梯度更易计算,不会出现sigmoid那样在两侧训练缓慢的问题,现在也被广泛地使用。

这篇关于CNN感性认识(二)——神经网络的优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/380206

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义