【经验模态分解】2.EMD的3个基本概念

2023-11-09 22:15

本文主要是介绍【经验模态分解】2.EMD的3个基本概念,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

/*** @poject          经验模态分解及其衍生算法的研究及其在语音信号处理中的应用* @file            EMD的3个基本概念* @author			jUicE_g2R(qq:3406291309)* * @language        MATLAB/Python/C/C++* @EDA				Base on matlabR2022b* @editor			Obsidian(黑曜石笔记软件)* * @copyright		2023* @COPYRIGHT	    原创学习笔记:转载需获得博主本人同意,且需标明转载源*/
  • 谈论到 E M D EMD EMD,都会提及到 解析信号顺时频率本征模态函数 I M F IMF IMF 这3个概念

1 解析信号

1-1 为什么要进行信号的解析?

采集的信号一般为 时间尺度数据 ,要分析其特性一般把 时间尺度变为频率尺度 ,即 信号的频率分析 。如果把信号直接进行 傅里叶变换 后会使频域变为 正频域和负频域(负频域现实世界是不存在的,只存在数学推导中),这就使得变换后的频域(正频域)缺失不完整,从而导致信号特性的缺失。

1-2 解析信号 z ( t ) = 源信号 x ( t ) + j x ^ ( t ) 解析信号z(t)=源信号x(t)+j\widehat{x}(t) 解析信号z(t)=源信号x(t)+jx (t)

1-2-1 信号 x ( t ) x(t) x(t) 的解析信号

1-2-2 将信号的 时间尺度 转变为 频率尺度

  • 时间转频率 的(只保留正频率)处理

  • 进一步处理,得到 Z ( f ) Z(f) Z(f) X ( f ) X(f) X(f) 的关系

  • 进而得到(令 h ( t ) h(t) h(t) 为冲击函数,映射的是上面的阶跃函数 H ( f ) H(f) H(f)
    z ( t ) = x ( t ) + j x ( t ) ∗ h ( t ) z(t)=x(t)+jx(t)*h(t) z(t)=x(t)+jx(t)h(t)

1-2-3 x ^ ( t ) \widehat{x}(t) x (t) 源信号 x ( t ) 源信号x(t) 源信号x(t)希尔伯特变换

希尔伯特变换
在信号处理中应用非常广,其最开始是由大数学家希尔伯特(David Hilbert)为解决黎曼-希尔伯特问题(the Riemann–Hilbert problem)中的一个特殊情况而引入。

  • 该变换物理意义非常明确:把信号所有 频率分量 相位推迟 90度。
  • x ( t ) x(t) x(t) x ^ ( t ) \widehat{x}(t) x (t)

  • z ( t ) z(t) z(t)希尔伯特变换

2 瞬时频率

2-1 为什么使用瞬时频率?

在 传统频谱分析 中,频率指是以 傅里叶变换 为基础的 与时间无关的量 :频率f或角频率w ,其实质是表示信号在一段时间内的总体特征。对于一般的平稳信号,传统的频域分析方法是有效的。
但是对于实际中存在的 非平稳信号,其频率是随时间变化的 ,此时傅里叶频率不再适合,为了表征信号的局部特性就需要引进 瞬时频率 的概念。

2-2 公式

  • 解析信号 z ( t ) = 源信号 x ( t ) + j x ^ ( t ) 解析信号z(t)=源信号x(t)+j\widehat{x}(t) 解析信号z(t)=源信号x(t)+jx (t)

2-2-1 瞬时振幅 A ( t ) A(t) A(t)

  • A ( t ) = x 2 ( t ) + x ^ 2 ( t ) A(t)=\sqrt{x^2(t)+\widehat{x}^2(t)} A(t)=x2(t)+x 2(t)

2-2-2 瞬时相位

  • θ ( t ) = a r c t a n x ^ ( t ) x ( t ) \theta(t)=arctan\frac{\widehat{x}(t)}{x(t)} θ(t)=arctanx(t)x (t)

2-2-3 信号的瞬时频率 为 瞬时相位的导数

  • 1 2 π w ( t ) = f ( t ) = 1 2 π d θ ( t ) d t \frac{1}{2π}w(t)=f(t)=\frac{1}{2π}\frac{d\theta(t)}{dt} 2π1w(t)=f(t)=2π1dtdθ(t)

2-2-4 处理时需要注意的点

  • 不是任何解析信号都可以通过该定义得到有意义的瞬时频率,要得到有意义的瞬时频率,原始信号就必须满足严格的条件

3 本征模态函数 I M F IMF IMF

3-1 要领: x ( t ) = ∑ i m f i ( t ) + r N ( t ) x(t)=∑imf_i(t)+r_N(t) x(t)=imfi(t)+rN(t)

将 原信号 分解成 若干本征模态函数 I M F IMF IMF单调 残差(残余信号) r N ( t ) r_N(t) rN(t)

  • 每个 I M F IMF IMF 必须要满足如下两个条件:
    1)在整个信号上,极值点的个数和过零点的个数相差不大于1;
    2)在任意点处,上下包络的均值为0。
  • 通常情况下,实际信号都是复杂信号并不满足上述条件。因此,黄锷进行了以下的假设:
    1)任何信号都是由若干本征模态函数组成的;
    2)各个本征模态函数即可是线性的,也可是非线性的,各本征模态函数的局部零点数和极值点数相同,同时上下包络关于时间轴局部对称;
    3)在任何时候,一个信号都可以包含若干本征模态函数,若各模态函数之间相互混叠,就组成了复合信号。

3-2 若干 I M F IMF IMF 的处理过程

3-2-1 E M D EMD EMD 分解 的 分析过程

  • 得到第一个 I M F IMF IMF 的 第一个 低频信号
    在这里插入图片描述

图解 x 0 ( t ) − m 1 ( t ) = h 1 1 ( t ) x_0(t)_-m_1(t)=h^1_1(t) x0(t)m1(t)=h11(t)

  • x 0 ( t ) x_0(t) x0(t) 源信号函数
    注:视图中的 u ( x ) u(x) u(x) x 0 ( t ) x_0(t) x0(t)
    在这里插入图片描述
    减去

  • m 1 ( t ) m_1(t) m1(t) 上下包络线的折中函数
    注:别管图中IMF2
    在这里插入图片描述
    等于

  • h 1 1 ( t ) h^1_1(t) h11(t) 低频信号
    在这里插入图片描述

  • 这一步处理得到的结果显然太理想了,需要经过 不超过10步(直到处理得到的函数满足 I M F IMF IMF 定义) 得到一个 中线趋于 x 轴 x轴 x h 1 k ( t ) h^k_1(t) h1k(t)(即 i m f 1 ( t ) imf_1(t) imf1(t)
    在这里插入图片描述

  • 这里的 r 1 ( t ) r_1(t) r1(t) 是源信号 经过处理后 的函数(即 x 1 ( t ) x_1(t) x1(t)
    在这里插入图片描述

  • 然后重复上述步骤直至 r n ( t ) r_n(t) rn(t)单调函数或常量 时, EMD分解过程停止!

3-2-2 整合若干阶 i m f imf imf 分量

  • x ( t ) = ∑ i = 1 n c i ( t ) + r n ( t ) x(t)=\sum_{i=1}^{n}{c_i}(t)+r_n(t) x(t)=i=1nci(t)+rn(t)

  • 结论 E M D EMD EMD 局部性强
    (研究的是局部,证明的也是局部的性质是)随着信号的不断地 本征模态分解,得到的 本征模态函数 的图像越来越平缓。
    在这里插入图片描述

参考文献:EMD算法研究及其在信号去噪中的应用_王婷.caj(第二章)

这篇关于【经验模态分解】2.EMD的3个基本概念的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/378752

相关文章

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【机器学习】高斯网络的基本概念和应用领域

引言 高斯网络(Gaussian Network)通常指的是一个概率图模型,其中所有的随机变量(或节点)都遵循高斯分布 文章目录 引言一、高斯网络(Gaussian Network)1.1 高斯过程(Gaussian Process)1.2 高斯混合模型(Gaussian Mixture Model)1.3 应用1.4 总结 二、高斯网络的应用2.1 机器学习2.2 统计学2.3

【Rocketmq入门-基本概念】

Rocketmq入门-基本概念 名词解释名称服务器(NameServer)消息队列(Message Queue)主题(Topic)标签(Tag)生产者(Producer)消费者(Consumer)拉取模式(Pull)推送模式(Push)消息模型(Message Model) 关键组件Broker消息存储工作流程 名词解释 名称服务器(NameServer) 定义: 名称服务器

LLM系列 | 38:解读阿里开源语音多模态模型Qwen2-Audio

引言 模型概述 模型架构 训练方法 性能评估 实战演示 总结 引言 金山挂月窥禅径,沙鸟听经恋法门。 小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小男孩,今天这篇小作文主要是介绍阿里巴巴的语音多模态大模型Qwen2-Audio。近日,阿里巴巴Qwen团队发布了最新的大规模音频-语言模型Qwen2-Audio及其技术报告。该模型在音频理解和多模态交互

2024年 Biomedical Signal Processing and Control 期刊投稿经验最新分享

期刊介绍 《Biomedical Signal Processing and Control 》期刊旨在为临床医学和生物科学中信号和图像的测量和分析研究提供一个跨学科的国际论坛。重点放在处理在临床诊断,患者监测和管理中使用的方法和设备的实际,应用为主导的研究的贡献。 生物医学信号处理和控制反映了这些方法在工程和临床科学的界面上被使用和发展的主要领域。期刊的范围包括相关的评论论文(review p

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩

特征值分解(EVD)和奇异值分解(SVD)—应用于图片压缩 目录 前言 一、特征值分解 二、应用特征值分解对图片进行压缩 三、矩阵的奇异值分解 四、应用奇异值分解对图片进行压缩 五、MATLAB仿真代码 前言         学习了特征值分解和奇异值分解相关知识,发现其可以用于图片压缩,但网上没有找到相应代码,本文在学习了之后编写出了图片压缩的代码,发现奇异值分

经验笔记:NAT穿越技术

NAT穿越技术经验笔记 随着互联网的普及和技术的发展,P2P(Peer to Peer,点对点)通信成为许多应用的核心功能之一。然而,网络地址转换(NAT)设备的存在常常成为实现P2P通信的一个障碍。本文旨在总结NAT穿越技术的基本原理及其配置方法,并探讨如何保障NAT穿越的安全性。 1. NAT穿越技术概述 NAT穿越技术是一种使位于不同NAT网络中的主机能够直接通信的技术。NAT(Net

经验笔记:SQL调优

SQL调优经验笔记 引言 SQL调优是确保数据库系统高效运行的重要环节。通过对查询语句、数据库配置、硬件资源等方面进行优化,可以显著提升数据库性能,进而增强应用程序的整体表现。以下是基于常见调优手段和实践经验整理的一份经验笔记。 1. 查询语句优化 1.1 避免使用SELECT * 只选择需要的列,减少不必要的数据传输。 示例: -- 不推荐SELECT * FROM users WH

AI时代产品经理面临的变与不变:0经验求职产品经理要注意哪些细节?

AI时代,各种产品形态、业务的变化,让市场也对产品经理提出了新的要求,产品经理要有哪些变与不变呢?现在入行产品经理是好时机么?没有技术背景、没有学历有优势如何入行做产品经理?今天我们一起探讨一下! 产品人究竟需要具备哪些能力?看这个最新的能力模型图就知道了。 随着当前市场的细分,不同行业和领域对产品经理的能力要求已经从单一的具备产品专业能力演变成了兼具产品专业技能+行业/业务知识

数据结构的基本概念和术语的一些介绍

数据:是客观事物的符号表示,包括两种:                  数值型(整数,实数)和非数值型(文字,图形,声音 数据元素:是数据的基本单位,通常作为一个整体进行表示。                  与数据的关系:是数据集合的个体 数据项:组成数据元素的不可分割的最小单位。 以上三者的关系:数据>数据元素>数据项                  例如:学生表>个人记录>