基于CSP的运动想象EEG分类任务实战

2023-11-09 13:15

本文主要是介绍基于CSP的运动想象EEG分类任务实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于运动想象的公开数据集:Data set IVa (BCI Competition III)1
数据描述参考前文:https://blog.csdn.net/qq_43811536/article/details/134224005?spm=1001.2014.3001.5501
EEG 信号时频空域分析参考前文:https://blog.csdn.net/qq_43811536/article/details/134273470?spm=1001.2014.3001.5501
基于CSP的运动想象 EEG 特征提取和可视化参考前文:https://blog.csdn.net/qq_43811536/article/details/134296308?spm=1001.2014.3001.5501
CSP(Common Spatial Patterns)——EEG特征提取方法详解参考前文:https://blog.csdn.net/qq_43811536/article/details/134296840?spm=1001.2014.3001.5501

本文使用公开数据集 Data set IVa 中的部分被试数据,数据已公开可以从网盘获取:
链接:https://pan.quark.cn/s/5425ee5918f4
提取码:hJFz


目录

  • 1. 实验介绍
  • 2. 运动想象分类
    • 2.1 分类性能
    • 2.2 结论
  • 3. 核心Python代码


1. 实验介绍

本任务的实验数据来自一名健康受试者,代号al。受试者在视觉提示出现后3.5s内完成以下3个运动想象中的一个:(L)左手,(R)右手,(F)右脚。分类任务中的数据只包括了右手和右脚两类,共280个试次。实验过程中使用脑电帽记录了118个通道的EEG信号,电极位置如图1所示。采集到的EEG信号首先经过带通滤波(0.05-200Hz),再经过数字化和下采样,得到采样率为100Hz的信号。

在这里插入图片描述

图1 电极位置

2. 运动想象分类

基于CSP特征,我们使用LDA分类器进行分类,并进行十折交叉验证以评估性能。评价指标为测试集准确率,即分类正确的试次占总试次的比例。

2.1 分类性能

我们比较了不同的带通滤波器和时间窗的结果。

  • 图1中,横轴为时间窗相较于提示出现的起始时间。不同的折线代表了不同窗长。我们发现在3s的窗长能获得更高的分类准确率,时间窗从提示出现后0.5s开始效果更好,分类准确率达到1。
  • 图2展示了滤波器截止频率对于准确率的影响,可以看到低频截止频率在10-12Hz时准确率能达到1。
  • 我们还比较了LDA分类器与线性回归(LR)和随机森林(RF)方法的性能,结果如表1所示。LDA分类器的准确率高于LR和RF,但分类性能都较高。
  • 最后我们去掉提取CSP特征的模块,直接对原始信号使用LDA分类器,结果如图3所示。去除掉提取CSP模块后,分类准确率由1下降至0.6左右。

在这里插入图片描述

图1 时间窗搜索结果。横轴为时间窗相较于提示出现的起始时间。不同的折线代表了不同窗长。

在这里插入图片描述

图2 滤波器参数搜索结果。横轴为低频截止频率,带宽固定为16Hz。

表1 不同分类器的分类结果
方法准确率
LDA1
LR0.99±0.01
RF0.99±0.01

在这里插入图片描述

图3 消融实验。直接对原始信号使用LDA性能较差。

2.2 结论

实验表明,右手和右脚运动想象的EEG差异集中于μ节律信号(8-15Hz)和β节律(18-24Hz),体现在C3和C4通道,即感觉运动区。使用CSP算法提取到的特征具有较高的线性可分性,使用LDA分类器可以实现准确率为1,能有效区分这两类运动想象。实验发现用于分类任务的时间窗范围和带通滤波范围对分类准确率具有较大影响,最优时间窗为提示出现后0.5s-3.5s,最优频带为12Hz-28Hz。


3. 核心Python代码

  • 部分变量说明:
    • raw:由 mne.io.RawArray() 函数创建,代表原始EEG数据
    • epochs:由 mne.Epochs() 函数创建,代表一个事件(event)对应的所有数据,在该数据集中一个事件即 “右手”或者“脚”的想象运动
# BP Filter
l_fr, h_fr = 12.0, 28.0
tMin, tMax = 0.5, 3.5# MNE object
info = mne.create_info(ch_names=[i[0] for i in ch_name],sfreq=eeg_fs,ch_types='eeg')
pos_dic = dict(zip(info.ch_names, ch_pos))
montage = mne.channels.make_dig_montage(pos_dic)info.set_montage(montage)
raw = mne.io.RawArray(eeg_data.T, info)
# Apply band-pass filter
raw.filter(l_fr, h_fr, fir_design="firwin", skip_by_annotation="edge")# Decodingevents = np.vstack((cues_pos, np.zeros(len(cues_pos)), target_label[0, :])).T.astype(int)
picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads")# Epochs
epochs = mne.Epochs(raw,events,events_id,tMin,tMax,proj=True,picks=picks,baseline=None,preload=True,
)# Prepare data for training
x = epochs.get_data()
y = target_label[0, :]# ten-fold cross-validation
cv = ShuffleSplit(10, test_size=test_r, random_state=42)# Classification with LDA on CSP features
lda = LinearDiscriminantAnalysis()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf = Pipeline([("CSP", csp), ("LDA", lda)])from sklearn.metrics import accuracy_scoretrain_x, test_x = x[:224], x[224:]
train_y, test_y = y[:224], y[224:]clf.fit(train_x,train_y)pred1 = clf.predict(train_x)
accuracy1 = accuracy_score(train_y,pred1)
print('在训练集上的精确度: %.4f'%accuracy1)pred2 = clf.predict(test_x)
accuracy2 = accuracy_score(test_y,pred2)
print('在测试集上的精确度: %.4f'%accuracy2)
# 模型比较
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifierlda = LinearDiscriminantAnalysis()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf_lda = Pipeline([("CSP", csp), ("LDA", lda)])
scores_lda = cross_val_score(clf_lda, x, y, cv=cv, n_jobs=None)lr = LogisticRegression()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf_lr = Pipeline([("CSP", csp), ("LR", lr)])
scores_lr = cross_val_score(clf_lr, x, y, cv=cv, n_jobs=None)rfc = RandomForestClassifier()
csp = CSP(n_components=10, reg=None, log=True, norm_trace=False)
clf_rfc = Pipeline([("CSP", csp), ("RFC", rfc)])
scores_rfc = cross_val_score(clf_rfc, x, y, cv=cv, n_jobs=None)
print(scores_lda, scores_lr, 'scores_svc', scores_rfc)
# Without CSP
lda = LinearDiscriminantAnalysis()
scores_lda_only = cross_val_score(lda, x.reshape(-1,118*301), y, cv=cv, n_jobs=None)
print(scores_lda_only)plt.plot(scores_lda,'-o',linewidth=2)
plt.plot(scores_lda_only,'-d',linewidth=2)
plt.xlabel('Folds',fontsize=16)
plt.ylabel('Accuracy',fontsize=16)
plt.legend(['CSP+LDA','LDA'],fontsize=16)
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.ylim([0,1.1])
plt.show()

  1. https://bbci.de/competition/iii/desc_IVa.html ↩︎

这篇关于基于CSP的运动想象EEG分类任务实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/376317

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10