机器学习——sigmoid、tanh、relu等激活函数总结

2023-11-09 03:20

本文主要是介绍机器学习——sigmoid、tanh、relu等激活函数总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、什么是激活函数?

一个神经元会同时接收多个信号,然后将这些信号乘以一定权重求和,再用函数处理后再输出新的信号。对神经元的输入进行处理,以获得输出的函数称为激活函数。

二、为什么要用激活函数?

  1. 激活函数对模型学习、理解非常复杂和非线性的函数具有重要作用。
  2. 激活函数可以引入非线性因素。如果不使用激活函数,则输出信号仅是一个简单的线性函数。线性函数一个一级多项式,线性方程的复杂度有限,从数据中学习复杂函数映射的能力很小。没有激活函数,神经网络将无法学习和模拟其他复杂类型的数据,例如图像、视频、音频、语音等。
  3. 激活函数可以把当前特征空间通过一定的线性映射转换到另一个空间,让数据能够更好的被分类。

三、为什么激活函数需要非线性函数?

  1. 假若网络中全部是线性部件,那么线性的组合还是线性,与单独一个线性分类器无异。这样就做不到用非线性来逼近任意函数。
  2. 使用非线性激活函数 ,以便使网络更加强大,增加它的能力,使它可以学习复杂的事物,复杂的表单数据,以及表示输入输出之间非线性的复杂的任意函数映射。使用非线性激活函数,能够从输入输出之间生成非线性映射。

四、常见的激活函数

1. sigmoid函数

sigmoid函数是最常用的连续、平滑的激励函数,也被称作逻辑函数(Logistic函数)。用于隐层神经元输出,可以将一个实数映射到(0,1)的区间,用来做二分类。

a. 函数定义: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1,值域: ( 0 , 1 ) (0,1) (0,1)

b. 函数图像:

c. 导数:: f ′ ( x ) = 1 1 + e − x ( 1 − 1 1 + e − x ) = f ( x ) ( 1 − f ( x ) ) f^{'}(x)=\frac{1}{1+e^{-x}}\left( 1- \frac{1}{1+e^{-x}} \right)=f(x)(1-f(x)) f(x)=1+ex1(11+ex1)=f(x)(1f(x))

d. 特点:当 x = 10 x=10 x=10,或 x = − 10 x=-10 x=10 f ′ ( x ) ≈ 0 f^{'}(x) \approx0 f(x)0,当 x = 0 x=0 x=0 f ′ ( x ) = 0.25 f^{'}(x) =0.25 f(x)=0.25

2. Tanh函数

a. 函数定义: f ( x ) = t a n h ( x ) = e x − e − x e x + e − x f(x) = tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=tanh(x)=ex+exexex,值域: ( − 1 , 1 ) (-1,1) (1,1)

b. 函数图像:

c. 导数: f ′ ( x ) = − ( t a n h ( x ) ) 2 f^{'}(x)=-(tanh(x))^2 f(x)=(tanh(x))2

d. 特点:当 x = 10 x=10 x=10,或 x = − 10 x=-10 x=10 f ′ ( x ) ≈ 0 f^{'}(x) \approx0 f(x)0,当 x = 0 x=0 x=0 f ‘ ( x ) = 1 f^{`}(x) =1 f(x)=1

3. ReLU函数

ReLU是神经网络最常用的非线性函数。其函数为max(0,x),连续但不平滑。

a. 函数定义: f ( x ) = m a x ( 0 , x ) f(x) = max(0, x) f(x)=max(0,x)值域: [ 0 , + ∞ ) [0,+∞) [0,+)

b. 函数图像:

c. 导数: f ′ ( x ) = { 0 , x < 0 1 , x > 0 u n d e f i n e d , x = 0 f^{'}(x)=\begin{cases} 0,x<0 \\ 1,x>0 \\ undefined,x=0\end{cases} f(x)=0,x<01,x>0undefined,x=0

d. 特点:具有单侧抑制;相对宽阔的兴奋边界;稀疏激活性等性质。

4. Leak Relu 激活函数

a. 函数定义: f ( x ) = { a x , x < 0 x , x > 0 f(x) = \left\{ \begin{aligned} ax, \quad x<0 \\ x, \quad x>0 \end{aligned} \right. f(x)={ax,x<0x,x>0,值域: ( − ∞ , + ∞ ) (-∞,+∞) (,+)

b. 函数图像(a=0.5):

c. 导数: f ′ ( x ) = { a , x < 0 1 , x > 0 u n d e f i n e d , x = 0 f^{'}(x)=\begin{cases} a,x<0 \\ 1,x>0 \\ undefined,x=0\end{cases} f(x)=a,x<01,x>0undefined,x=0

5. ELU函数

a. 函数定义: f ( x ) = { a ( e x − 1 ) , x < 0 x , x > 0 f(x) = \left\{ \begin{aligned} a(e^x-1), \quad x<0 \\ x, \quad x>0 \end{aligned} \right. f(x)={a(ex1),x<0x,x>0,值域: ( − a , + ∞ ) (-a,+∞) (a,+)

b. 函数图像(a=0.5):

6. SoftPlus 函数

a. 函数定义: f ( x ) = l n ( 1 + e x ) f(x) = ln( 1 + e^x) f(x)=ln(1+ex)值域: $ (0,+∞) $

b. 函数图像:

c. 导数: f ′ ( x ) = e x 1 + e x f^{'}(x)=\frac{e^x}{1 + e^x} f(x)=1+exex

7. softmax函数

softmax 函数可以把它的输入,通常被称为 logits 或者 logit scores,处理成 0 到 1 之间,并且能够把输出归一化到和为 1。这意味着 softmax 函数与分类的概率分布等价。它是一个网络预测多酚类问题的最佳输出激活函数。

a. 函数定义: P ( i ) = e x p ( θ i T x ) ∑ k = 1 K e x p ( θ i T x ) P(i) = \frac{exp(\theta_i^T x)}{\sum_{k=1}^{K} exp(\theta_i^T x)} P(i)=k=1Kexp(θiTx)exp(θiTx),其中, θ i \theta_i θi x x x 是列向量, θ i T x \theta_i^T x θiTx 可能被换成函数关于 x x x 的函数 f i ( x ) f_i(x) fi(x)

五、如何选择激活函数

选择一个适合的激活函数并不容易,需要考虑很多因素,通常的做法是,如果不确定哪一个激活函数效果更好,可以把它们都试试,然后在验证集或者测试集上进行评价。然后看哪一种表现的更好,就去使用它。以下是常见的选择情况:

  1. 如果输出是 0、1 值(二分类问题),则输出层选择 sigmoid 函数,然后其它的所有单元都选择 Relu 函数。
  2. 如果在隐藏层上不确定使用哪个激活函数,那么通常会使用 Relu 激活函数。有时,也会使用 tanh 激活函数,但 Relu 的一个优点是:当是负值的时候,导数等于 0。
  3. sigmoid 激活函数:除了输出层是一个二分类问题基本不会用它。
  4. tanh 激活函数:tanh 是非常优秀的,几乎适合所有场合。
  5. ReLu 激活函数:最常用的默认函数,如果不确定用哪个激活函数,就使用 ReLu 或者 Leaky ReLu,再去尝试其他的激活函数。
  6. 如果遇到了一些死的神经元,我们可以使用 Leaky ReLU 函数。

这篇关于机器学习——sigmoid、tanh、relu等激活函数总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373777

相关文章

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Python中连接不同数据库的方法总结

《Python中连接不同数据库的方法总结》在数据驱动的现代应用开发中,Python凭借其丰富的库和强大的生态系统,成为连接各种数据库的理想编程语言,下面我们就来看看如何使用Python实现连接常用的几... 目录一、连接mysql数据库二、连接PostgreSQL数据库三、连接SQLite数据库四、连接Mo

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Kubernetes常用命令大全近期总结

《Kubernetes常用命令大全近期总结》Kubernetes是用于大规模部署和管理这些容器的开源软件-在希腊语中,这个词还有“舵手”或“飞行员”的意思,使用Kubernetes(有时被称为“... 目录前言Kubernetes 的工作原理为什么要使用 Kubernetes?Kubernetes常用命令总

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日