PID控制在自动驾驶中的应用举例(二)航向控制

2023-11-09 01:59

本文主要是介绍PID控制在自动驾驶中的应用举例(二)航向控制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上一篇中介绍了使用PID进行车速控制,控制目标相对简单,如果加入转向的目标,任务复杂程度都会有所增加。

对于环境的配置与之前类似,不再赘述。

from matplotlib import pyplot as plt
from collections import deque
import numpy as npimport gym
import highway_env
%matplotlib inlineenv = gym.make('highway-v0')
config = \{"observation": {"type": "Kinematics","vehicles_count": 1,"features": ["presence",'x','y', "vx", "vy"],"features_range": {"x": [-100, 100],"y": [-100, 100],"vx": [-100, 100],"vy": [-100, 100]},"absolute": True,"order": "sorted"},"action": {"type": "ContinuousAction"},    "simulation_frequency": 15,  # [Hz]"policy_frequency": 5,  # [Hz]'vehicles_count': 0,'reward_speed_range': [20, 80],}

对于航向控制来说,我自己总结了一种计算方向盘转角的方式,需要输入3个矢量:汽车朝向,目的地要求的汽车朝向和汽车位置与目的地连线的朝向。目的是根据当前汽车的朝向和相对于目的地的方向推算出方向盘合适的转角度数。
方位示意图
将车辆和目的地的方向矢量相加,再与direction的矢量角度进行比较,即可确定方向盘需旋转的角度,如果δ为负(逆时针),则向左打方向盘,若为正(顺时针),向右打方向盘。角度的大小由向量夹角公式决定。
在这里插入图片描述

使用代码对以上方法进行表示:

def get_angle(v_p,v_h,dest_p,dest_h):v_head_x=np.cos(v_h)v_head_y=np.sin(v_h)  d_head_x=1*np.cos(dest_h)d_head_y=1*np.sin(dest_h)car_dir = np.array([v_head_x,v_head_y])path_dir = np.array([dest_p[0]-v_p[0],dest_p[1]-v_p[1]])dest_dir = np.array([car_dir[0]+d_head_x,car_dir[1]+d_head_y])cos_theta=np.dot(dest_dir,path_dir)/(np.linalg.norm(dest_dir)*np.linalg.norm(path_dir))left_right = 0 if np.cross(dest_dir,path_dir)==0 else abs(np.cross(dest_dir,path_dir))/np.cross(dest_dir,path_dir)angle = np.arccos(cos_theta)*left_rightreturn angle

之后可以手动指定车辆和目的地的坐标和方向,坐标是我随机设的点,对于highway-env环境来说,车道不是一个严格的物理模型,汽车开出车道也不会停止模拟。方向的范围是[0,2*pi]。

V_HEADING=np.pi
V_POSITION_X=180
V_POSITION_Y=2D_HEADING=0
D_POSITION_X=360
D_POSITION_Y=12

之后就可以使用PID等控制方法对汽车进行导航。为了在到达目的地之后停止环境模拟,可以设置一个距离函数,当汽车和目的地的距离小于2m时,认为汽车已经到达目的地,停止模拟。

def get_distance(v_p,dest_p):dis=np.sqrt((v_p[0]-dest_p[0])**2+(v_p[1]-dest_p[1])**2)return dis

传统控制

传统控制直接将δ值作为方向盘转角steering值。由于物理环境没有阻力,不用对油门踏板进行设置,汽车会一直按照初始速度匀速前进。

env.configure(config)
env.reset()
env.vehicle.heading=V_HEADING
env.vehicle.position=[V_POSITION_X,V_POSITION_Y]
dest_position=[D_POSITION_X,D_POSITION_Y]
dest_heading=D_HEADING
e=0
his_p1=[]for _ in range(300):action=[0,e]obs, reward, done, info = env.step(action)v_p=env.road.vehicles[0].positionv_h=env.vehicle.headinghis_p1.append([v_p[0],v_p[1]])angle=get_angle(v_p,v_h,dest_position,dest_heading)e = 0 if abs(angle)<0.01 else min(max(angle,-1),1)  # [-3.14,3.14] ->  [-1,1]dis = get_distance(v_p,dest_position)if dis<2:breakenv.render()
env.close()

PID控制

与速度控制类似,PID需要开辟一个buffer以便求微分和积分。

env.configure(config)
env.reset()
env.vehicle.heading=V_HEADING
env.vehicle.position=[V_POSITION_X,V_POSITION_Y]
dest_position=[D_POSITION_X,D_POSITION_Y]
dest_heading=D_HEADING
dt=0.1
buffer = deque(maxlen=10)e=0
e_p=0
e_i=0
e_d=0his_p2=[]
for _ in range(300):action=[0,e]obs, reward, done, info = env.step(action)v_p=env.road.vehicles[0].positionv_h=env.vehicle.headinghis_p2.append([v_p[0],v_p[1]])angle=get_angle(v_p,v_h,dest_position,dest_heading)    e_p = 0 if abs(angle)<0.01 else min(max(angle,-1),1)buffer.append(e_p)e_i=np.sum(buffer)*dtif len(buffer)>=2:        e_d=(buffer[-1]-buffer[-2])/dtelse:e_d=0e=e_p+0.5*e_i+0.05*e_ddis = get_distance(v_p,dest_position)if dis<2:breakenv.render()
env.close()

模拟完成后可以画出汽车行驶路径的散点图,以观察两种方法的异同

plt.figure(figsize=(12,8))
plt.scatter(np.transpose(his_p1)[0],-np.transpose(his_p1)[1])
plt.scatter(np.transpose(his_p2)[0],-np.transpose(his_p2)[1])

在这里插入图片描述
(地图里y轴正负是反的,我也不理解为啥画出来的图y轴值都是负的)

可以看出来方向控制的变化和速度控制类似,采用PID可以快速将方向调整到的和目标方向一致,但会有小幅震荡。

这篇关于PID控制在自动驾驶中的应用举例(二)航向控制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373541

相关文章

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Spring如何使用注解@DependsOn控制Bean加载顺序

《Spring如何使用注解@DependsOn控制Bean加载顺序》:本文主要介绍Spring如何使用注解@DependsOn控制Bean加载顺序,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录1.javascript 前言2. 代码实现总结1. 前言默认情况下,Spring加载Bean的顺

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2