发家致富靠 AI ?使用 keras 预测NBA比赛赚钱,回报率达136%……

2023-11-08 19:30

本文主要是介绍发家致富靠 AI ?使用 keras 预测NBA比赛赚钱,回报率达136%……,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者 | Caleb Cheng

译者 | Deephub翻译组

来源 | DeepHub IMBA

投注者和博彩者没有太多共同点——人们可以把他们的关系描述为一场竞争、决斗、战争。但在梦中,他们却为同样的幻想而垂涎三尺:一个完美的预测模型,使用它能够精确地预测出未来游戏的结果。通过深入学习,这或许是可能的——或者至少比以前的数据科学技术更容易。

基本假设是NBA市场效率低下(价格或投注线并不能反映出所有可用信息),而且可能比大多数市场效率更低,因为铁杆球迷倾向于只赌他们最喜欢的球队。如果你能对市场的低效率下赌注,你就能赚钱。我们识别低效率的方法之一是通过数据分析。

尽管许多尝试这一挑战的模型都是准确的,但大多数模型离盈利还差得很远。原因很简单:博彩公司也非常准确。即使你能达到博彩公司的准确性,你也会因为5%的投注费而失败。

https://www.football-data.co.uk/blog/nba_pinnacle_efficiency.php

图表是365net的预测线与实际的赢取百分比。一个成功的模型必须能够通过完美的回归分析预测博彩公司的微小波动。

我的模型是用带有Tensorflow的Python构建的,它分析了过去11个NBA赛季,并且在很多方面与其他的深度学习模型相似(后者经常被试图用于解决这个问题)。但是我们的模型有一个关键的区别——它使用了一个自定义的损失函数来剔除与博彩公司的相关性。我们正在挑选博彩公司错误预测获胜百分比的游戏。  

去相关损失公式-这很重要!!!!!!!

源码

模型结构

我用nba_api Python库抓取了得分记录。数据存储在MongoDB集合中。在过去的11个赛季中,每名球员每局共存储42个统计数据,从罚球率到防守得分再到偷球次数不等。下注数据是从betexplorer中收集的。找到高质量的投注线比训练模型困难得多。你可以向斯洛文尼亚卢布雅那大学的什特鲁姆贝尔教授寻求帮助。

对于每一场比赛,样本是用赛季初每名球员最近8场比赛的平均数计算出来的。根据平均比赛时间选出前8名选手。

模型

预处理

  import os  import numpy as np  from tqdm import tqdm  from pymongo import MongoClient  bookies = {  "44":"Betfair",  "16":"bet365",  "18":"Pinnacle",  "5":"Unibet"  }  client = MongoClient()  db = client.nba  games = db.gamesseasons = [f"002{str(i).zfill(2)}" for i in range(8, 20)]  # load the samples into memory  x, y = [], []  def normalize_sample(nparr):  for feature in range(nparr.shape[-1]): # iterate over the features  f = np.nan_to_num(nparr[:, :, feature])  nparr[:, :, feature] = (f-f.min())/(f.max()-f.min())  return nparrfor season in seasons:  for filename in tqdm(os.listdir(f"samples/{season}")[120:]):  if ".npy" in filename:  game = list(games.find({"GAME_ID":filename.strip(".npy"), "bet365":{"$exists":"True"}}))  if not game:  continue  game = game[0]  closing_odds = 1/float(game["bet365"].split()[1].split("v")[0])  home_win = int(game["HOME"] == game["WINNER"])  sample = np.load(f"samples/{season}/{filename}")  x.append((normalize_sample(sample), closing_odds))  y.append(home_win)  x = np.array(x)  y = np.array(y)import random  print(x.shape, y.shape)  diff = len(y)//2 - np.count_nonzero(y == 0)  for i in tqdm(range(diff)):  while True:  a = random.randint(1, len(y)-1)  if y[a] == 1:  x = np.delete(x, a, 0)  y = np.delete(y, a, 0)  break  print(len(x), len(y))

模型

from keras import backend as K  
from keras.models import Model  
from keras.models import Sequential  
from keras.layers import Input, Dense, Dropout, Conv2D, Flatten, Activation, concatenate  
from keras.optimizers import Adamc = 0.6  
def decorrelation_loss(neuron):  def loss(y_actual, y_predicted):  return K.mean(  K.square(y_actual-y_predicted) - c * K.square(y_predicted - neuron))  return loss# split the two input streams  box_scores_train, odds_train = map(list, zip(*x_train))  box_scores_test, odds_test = map(list, zip(*x_test))# box model turns stats into a vector  box_model = Sequential()  shape = box_scores_train[0].shape  print(shape)  box_model.add(Conv2D(filters=32, kernel_size=(1, 8), input_shape=shape,  data_format="channels_first", activation="relu"))  box_model.add(Flatten())box_input = Input(shape=shape)  box_encoded = box_model(box_input)odds_input = Input(shape=(1,), dtype="float32") #(opening or closing weight)  merged = concatenate([odds_input, box_encoded])  output = Dense(32, activation="relu")(merged)  output = Dropout(0.5)(output)  output = Dense(8, activation="relu")(output)  output = Dropout(0.5)(output)  signal = Dense(1, activation="sigmoid")(output)opt = Adam(lr=0.0001)  nba_model = Model(inputs=[box_input, odds_input], outputs=signal)  print(nba_model.summary())nba_model.compile(optimizer=opt,  #loss="binary_crossentropy",  loss=decorrelation_loss(odds_input), # Call the loss function with the selected layer  metrics=['accuracy'])  nba_model.fit([box_scores_train, odds_train], y_train,  batch_size=16,validation_data=([box_scores_test, odds_test], y_test), verbose=1,epochs=20)

该模型是Conv2D和稠密层的组合,具有大量的dropout。模型独一无二的部分是去相关性损失函数,在我的第一篇论文中提到过。尽管Keras本身并不支持具有神经元值的损失函数,但将函数包装在函数中是一种有用的解决方法。我在GTX 1660Ti上训练了20个世代的网络,直到网络收敛。

结果

使用一种非常原始的赌博策略,即10%的平衡*模型置信度,并且仅在模型的置信度大于0.6的游戏上赌博,我们就产生了向上的平衡趋势。有趣的是,这个模型只赌了大约10%的游戏。除了整个2017-18赛季的惨败,我们的模型表现非常好,从最初的100美元投资到现在的136美元,峰值为292美元。

展望与未来

这只是这个模型的开始。有了令人鼓舞的结果,我想制定一个更具活力的投注策略。            

唯一有用的可能是下注代码和模型。             

使用NoSQL是一个错误,我应该坚持使用SQLite,但是学习一种新技术是很好的。编写一个自定义损失函数是一个非常宝贵的经验,并将在未来的深入学习项目中派上用场。

代码地址:https://github.com/calebcheng00/nba_predictions/blob/master/nba.ipynb

推荐阅读

  • 真没想到,Python还能实现5毛特效

  • 作词家下岗系列:教你用 AI 做一个写歌词的软件!

  • AI修复100年前晚清影像喜提热搜,这两大算法立功了

  • 阿里云自研数据仓库 AnalyticDB 再捧 TPC 全球冠军

  • 调查了 17,000 多位程序员,当前的云原生开发现状究竟如何?

  • CSW:惊天巨骗 or 比特币“图腾”中本聪?

  • 从 0 到 70%:Chrome 上位揭秘!

  • 你点的每个“在看”,我都认真当成了AI

这篇关于发家致富靠 AI ?使用 keras 预测NBA比赛赚钱,回报率达136%……的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372010

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

Qt中QUndoView控件的具体使用

《Qt中QUndoView控件的具体使用》QUndoView是Qt框架中用于可视化显示QUndoStack内容的控件,本文主要介绍了Qt中QUndoView控件的具体使用,具有一定的参考价值,感兴趣的... 目录引言一、QUndoView 的用途二、工作原理三、 如何与 QUnDOStack 配合使用四、自

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Node.js制作图片上传服务的详细教程

《使用Node.js制作图片上传服务的详细教程》在现代Web应用开发中,图片上传是一项常见且重要的功能,借助Node.js强大的生态系统,我们可以轻松搭建高效的图片上传服务,本文将深入探讨如何使用No... 目录准备工作搭建 Express 服务器配置 multer 进行图片上传处理图片上传请求完整代码示例