发家致富靠 AI ?使用 keras 预测NBA比赛赚钱,回报率达136%……

2023-11-08 19:30

本文主要是介绍发家致富靠 AI ?使用 keras 预测NBA比赛赚钱,回报率达136%……,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者 | Caleb Cheng

译者 | Deephub翻译组

来源 | DeepHub IMBA

投注者和博彩者没有太多共同点——人们可以把他们的关系描述为一场竞争、决斗、战争。但在梦中,他们却为同样的幻想而垂涎三尺:一个完美的预测模型,使用它能够精确地预测出未来游戏的结果。通过深入学习,这或许是可能的——或者至少比以前的数据科学技术更容易。

基本假设是NBA市场效率低下(价格或投注线并不能反映出所有可用信息),而且可能比大多数市场效率更低,因为铁杆球迷倾向于只赌他们最喜欢的球队。如果你能对市场的低效率下赌注,你就能赚钱。我们识别低效率的方法之一是通过数据分析。

尽管许多尝试这一挑战的模型都是准确的,但大多数模型离盈利还差得很远。原因很简单:博彩公司也非常准确。即使你能达到博彩公司的准确性,你也会因为5%的投注费而失败。

https://www.football-data.co.uk/blog/nba_pinnacle_efficiency.php

图表是365net的预测线与实际的赢取百分比。一个成功的模型必须能够通过完美的回归分析预测博彩公司的微小波动。

我的模型是用带有Tensorflow的Python构建的,它分析了过去11个NBA赛季,并且在很多方面与其他的深度学习模型相似(后者经常被试图用于解决这个问题)。但是我们的模型有一个关键的区别——它使用了一个自定义的损失函数来剔除与博彩公司的相关性。我们正在挑选博彩公司错误预测获胜百分比的游戏。  

去相关损失公式-这很重要!!!!!!!

源码

模型结构

我用nba_api Python库抓取了得分记录。数据存储在MongoDB集合中。在过去的11个赛季中,每名球员每局共存储42个统计数据,从罚球率到防守得分再到偷球次数不等。下注数据是从betexplorer中收集的。找到高质量的投注线比训练模型困难得多。你可以向斯洛文尼亚卢布雅那大学的什特鲁姆贝尔教授寻求帮助。

对于每一场比赛,样本是用赛季初每名球员最近8场比赛的平均数计算出来的。根据平均比赛时间选出前8名选手。

模型

预处理

  import os  import numpy as np  from tqdm import tqdm  from pymongo import MongoClient  bookies = {  "44":"Betfair",  "16":"bet365",  "18":"Pinnacle",  "5":"Unibet"  }  client = MongoClient()  db = client.nba  games = db.gamesseasons = [f"002{str(i).zfill(2)}" for i in range(8, 20)]  # load the samples into memory  x, y = [], []  def normalize_sample(nparr):  for feature in range(nparr.shape[-1]): # iterate over the features  f = np.nan_to_num(nparr[:, :, feature])  nparr[:, :, feature] = (f-f.min())/(f.max()-f.min())  return nparrfor season in seasons:  for filename in tqdm(os.listdir(f"samples/{season}")[120:]):  if ".npy" in filename:  game = list(games.find({"GAME_ID":filename.strip(".npy"), "bet365":{"$exists":"True"}}))  if not game:  continue  game = game[0]  closing_odds = 1/float(game["bet365"].split()[1].split("v")[0])  home_win = int(game["HOME"] == game["WINNER"])  sample = np.load(f"samples/{season}/{filename}")  x.append((normalize_sample(sample), closing_odds))  y.append(home_win)  x = np.array(x)  y = np.array(y)import random  print(x.shape, y.shape)  diff = len(y)//2 - np.count_nonzero(y == 0)  for i in tqdm(range(diff)):  while True:  a = random.randint(1, len(y)-1)  if y[a] == 1:  x = np.delete(x, a, 0)  y = np.delete(y, a, 0)  break  print(len(x), len(y))

模型

from keras import backend as K  
from keras.models import Model  
from keras.models import Sequential  
from keras.layers import Input, Dense, Dropout, Conv2D, Flatten, Activation, concatenate  
from keras.optimizers import Adamc = 0.6  
def decorrelation_loss(neuron):  def loss(y_actual, y_predicted):  return K.mean(  K.square(y_actual-y_predicted) - c * K.square(y_predicted - neuron))  return loss# split the two input streams  box_scores_train, odds_train = map(list, zip(*x_train))  box_scores_test, odds_test = map(list, zip(*x_test))# box model turns stats into a vector  box_model = Sequential()  shape = box_scores_train[0].shape  print(shape)  box_model.add(Conv2D(filters=32, kernel_size=(1, 8), input_shape=shape,  data_format="channels_first", activation="relu"))  box_model.add(Flatten())box_input = Input(shape=shape)  box_encoded = box_model(box_input)odds_input = Input(shape=(1,), dtype="float32") #(opening or closing weight)  merged = concatenate([odds_input, box_encoded])  output = Dense(32, activation="relu")(merged)  output = Dropout(0.5)(output)  output = Dense(8, activation="relu")(output)  output = Dropout(0.5)(output)  signal = Dense(1, activation="sigmoid")(output)opt = Adam(lr=0.0001)  nba_model = Model(inputs=[box_input, odds_input], outputs=signal)  print(nba_model.summary())nba_model.compile(optimizer=opt,  #loss="binary_crossentropy",  loss=decorrelation_loss(odds_input), # Call the loss function with the selected layer  metrics=['accuracy'])  nba_model.fit([box_scores_train, odds_train], y_train,  batch_size=16,validation_data=([box_scores_test, odds_test], y_test), verbose=1,epochs=20)

该模型是Conv2D和稠密层的组合,具有大量的dropout。模型独一无二的部分是去相关性损失函数,在我的第一篇论文中提到过。尽管Keras本身并不支持具有神经元值的损失函数,但将函数包装在函数中是一种有用的解决方法。我在GTX 1660Ti上训练了20个世代的网络,直到网络收敛。

结果

使用一种非常原始的赌博策略,即10%的平衡*模型置信度,并且仅在模型的置信度大于0.6的游戏上赌博,我们就产生了向上的平衡趋势。有趣的是,这个模型只赌了大约10%的游戏。除了整个2017-18赛季的惨败,我们的模型表现非常好,从最初的100美元投资到现在的136美元,峰值为292美元。

展望与未来

这只是这个模型的开始。有了令人鼓舞的结果,我想制定一个更具活力的投注策略。            

唯一有用的可能是下注代码和模型。             

使用NoSQL是一个错误,我应该坚持使用SQLite,但是学习一种新技术是很好的。编写一个自定义损失函数是一个非常宝贵的经验,并将在未来的深入学习项目中派上用场。

代码地址:https://github.com/calebcheng00/nba_predictions/blob/master/nba.ipynb

推荐阅读

  • 真没想到,Python还能实现5毛特效

  • 作词家下岗系列:教你用 AI 做一个写歌词的软件!

  • AI修复100年前晚清影像喜提热搜,这两大算法立功了

  • 阿里云自研数据仓库 AnalyticDB 再捧 TPC 全球冠军

  • 调查了 17,000 多位程序员,当前的云原生开发现状究竟如何?

  • CSW:惊天巨骗 or 比特币“图腾”中本聪?

  • 从 0 到 70%:Chrome 上位揭秘!

  • 你点的每个“在看”,我都认真当成了AI

这篇关于发家致富靠 AI ?使用 keras 预测NBA比赛赚钱,回报率达136%……的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/372010

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa