【源码】HFMRD:用于检测对冲基金报告中错误回报的框架

2023-11-08 19:30

本文主要是介绍【源码】HFMRD:用于检测对冲基金报告中错误回报的框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=jpeg


此脚本表示了一个完整的功能框架,用于通过以下测试检测对冲基金报告中的错误回报

This script represents a full-featured framework for detecting misreported returns in hedge funds through the following tests:


> Low Correlation with Other Assets (Bollen & Pool, 2008-2010): 

==> IndexRSQ 

==> MaxRSQ or SwitchRSQ with change-point regression (as per Andrews et al., 1996) 

> Serial Correlation (Bollen & Pool, 2008-2010): 

==> Unconditional 

==> Conditional 

> Bias Ratio (Abdulali, 2002) 

> December Spike (Agarwal et al., 2011) 

> Discontinuity At Zero / Kink (Bollen & Pool, 2008-2010) 

> Digits Conformity (Bollen & Pool, 2008-2010): 

==> Benford's Law Conformity of First Digits 

==> Uniform Distribution Conformity of Last Digits 

> Data Quality (Straumann, 2008): 

==> Number of Negative Returns 

==> Number of Zero Returns 

==> Number of Unique Returns 

==> Number of Pairs of Identical Returns 

==> Maximum Length of Adjacent Identical Returns


They are all based on the normality assumption of returns.


# USAGE #


1) Create a properly structured database (see the paragraph below). 

2) Edit the "run.m" script following your needs. 

3) Execute the "run.m" script.


The "Test Results" plot created by the "plot_results" function is interactive and based on a singleton pattern. Detailed plots concerning a specific test for a specific hedge fund can be displayed by clicking on the corresponding table cell.


# DATASET #


Datasets must be structured like the default one included in every release of the framework ("Datasets/Example.xlsx"). The latter, based on the US financial sector, defines the following entities:


> Benchmark (BM) & Risk-Free Rate (RF) 

The benchmark is represented by the market proxy defined in Fama & French, 1993: the value-weighted returns of all the US CRSP firms listed on the AMEX, NASDAQ or NYSE that have a CRSP share code of 10 or 11 at the beginning of month t, good shares and price data at the beginning of t, and good return data for t. The 1M treasury bill rate is taken as the risk-free rate.


> Hedge Funds (3): 

==> The Growth Fund of America - Class A (AGTHX) 

==> The Gateway Fund - Class A (GATEX) 

==> The Fairfield Sentry Fund of Bernard Madoff (SENTRY)


> Style Factors (18): 

==> MRKEXC: the excess return on the market, calculated as benchmark minus risk-free rate. 

==> Fama & French 5 Factors from the French Data Library (10) 

====> CMA: conservative minus aggressive, the average return on two conservative investment portfolios minus the average return on two aggressive investment portfolios. 

====> HML: high minus slow, the average return on two value portfolios minus the average return on two growth portfolios. 

====> MF: the momentum factor, the average return on two high prior return portfolios minus the average return on two low prior return portfolios. 

====> RMW: robust minus weak, the average return on two robust operating profitability portfolios minus the average return on two weak operating profitability portfolios. 

====> SMB: small minus big, the average return on nine small stock portfolios minus the average return on nine big stock portfolios. 

====> The squared values of the above factors, proposed by Bollen & Pool to capture nonlinearities in exposure generated by dynamic trading and/or derivatives. 

==> Fung & Hsieh Trend-following Factors from the Hsieh Website (7) 

====> PTFSBD: the returns of a portfolio of options on bonds, based on a primitive trend-following strategy. 

====> PTFSFX: the returns of a portfolio of options on foreign currencies, based on a primitive trend-following strategy. 

====> PTFSCO: the returns of a portfolio of options on commodities, based on a primitive trend-following strategy. 

====> PTFSIR: the returns of a portfolio of options on short−term interest rates, based on a primitive trend-following strategy. 

====> PTFSST: the returns of a portfolio of options on stock indices, based on a primitive trend-following strategy. 

====> TBR10Y: the 10Y treasury bond rate. 

====> CRESPR: the change in the credit spread (the BAA corporate bond rate minus the 10Y treasury bond rate).


For what concerns the financial time series: 

> they must be based on a monthly frequency; 

> they must contain enough observations to run consistent calculations (a minimum of 120 observations for at least 3 hedge funds is required); 

> they must have been previously validated and preprocessed by removing rows with NaNs or filling the gaps with an interpolation approach; 

> a minimum of 3 style factors is required; 

> groups are optional, hence their sheet must be removed from the dataset if all the hedge funds are assumed to belong to the same style.


完整资料领取请加QQ群免费下载:

640?wx_fmt=png

这篇关于【源码】HFMRD:用于检测对冲基金报告中错误回报的框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371999

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景