BET数据处理中8大案例分析,教你看懂吸脱附曲线【内含干货】

2023-11-08 18:40

本文主要是介绍BET数据处理中8大案例分析,教你看懂吸脱附曲线【内含干货】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Q:为什么得到的BET值为负?

A:正常情况下样品对吸附质有吸附的话比表面积值应该为正,出现负值的可能有三种原因:

1. 样品自身的原因,可以看等温吸脱附曲线,如果没有吸附的话吸附值应该在0附近,再加上仪器误差的现象,也可能跑到负值出现吸附点,所以该类样品的吸附几乎可以忽略。

2. 测试所加样品量过少,造成总的吸附值很低,则容易产生这个现象。

3. 脱气温度和时间不合理,脱气温度过高,造成孔结构的变化或坍塌,脱附温度太低或者脱气时间短,造成脱气不完全,也会产生这个问题。

Q:为什么等温吸脱附曲线是不闭合的?

A:等温吸脱附曲线不闭合,这种情况比较常见,产生这种现象的原因也比较多,可能原因如下:

1. 材料表面存在特殊的基团和化学性能,导致吸附的气体分子无法完全脱离,即材料对吸附质有较强作用,导致吸脱附会存在一定的不闭合程度。

2. 材料自身的比表面较小,一般吸脱附闭合程度会较差。

3. 称样量问题,称样量太少,容易造成测量不准,也会出现此类情况。

4. 样品前处理问题,温度太高,测试的孔结构坍塌,气体脱附不出来会造成曲线不闭合。

5. 如果研究碳材料的话需要注意,碳材料的孔大多为柔性孔或者墨水瓶孔,气体吸附之后孔口直径收缩,导致吸附上的气体不易脱附,很容易导致吸脱附曲线不闭合。

Q:为什么等温吸脱附曲线是交叉的?

A:吸附曲线和脱附曲线发生交叉的主要原因是:

1. 样品吸附值本身就比较小,容易出现波动。

2. 脱气条件不合适,脱气温度低或者时间短,水分没有完全除去,在脱附过程中脱去了。

3. 样品量太少,容易造成测量不准,也会出现此类情况。

4. 样品脱气前处理条件不合适,造成脱气不完全,在脱附的过程中有东西脱附出来,造成等温吸附曲线和等温脱附曲线产生交叉的现象。

Q:BJH脱附孔径分布存在“假峰”

A:在气体脱附过程中大多数情况下都反映了一个滞后的过程。

所以在用BJH方法分析样品孔径时,脱附段很容易出现假峰,一般是在3.8nm处出现,出现假峰的原因与孔的类型有关系,内部孔道的连通性,孔型的多样性以及孔径的分散性等等原因都会导致在脱附过程中出现假峰。

Q:谱图中出现了S型微孔等温曲线

A:S型回线通常发生在低压区微孔材料测试过程中出现。出现S型回线主要有两点原因,一种是低压区吸附不完全,在没有达到吸附平衡时候就进入到了第二个吸附点,所以会产生S型回线。

如果想要改变这种情况,应该适当增加低压区的吸附时间,保证每一个压力点都可以达到吸附平衡。

第二个原因是氦污染,在用氦气测量死体积时,是基于氦气不吸附的假设,但事实上物理吸附是非特异性吸附,对任何气体都存在吸附,微孔材料会吸附较多的氦气,其影响无法忽略不计。因此在继续分析之前,应当至少将样品放在室温下使氦气溢出后再进行测量。

Q:是否可以增加或者减少一些压力点?

A:每台仪器上介孔或者全孔测试都有固定的测试文件,压力点都是设置好的,直接测试就可以。

如果有特殊需求,也可以增加或减少一些压力点的话,测试时间也会相应改变,如果低压区加密点,测试时间会变得更久,可能较正常时间要多一倍的测试时间,所以时间的成本和测试的成本会相应增加。

Q:样品的比表面积,是否和样品测试量有关?样品用量过少会造成哪些影响?

A:样品的比表面积只与样品本身有关,理论上测试量多少并不会改变比表面积的大小;但是如果样品量过少,吸附量低,会产生误差,得不到准确的比表面积值。

Q:从数据上哪个指标可以看出数据的好坏?

A:所有的信息,比表面积,孔容,平均孔径,孔径分布都是基于吸脱附曲线来计算得来的,因此判断结果好坏最直接的就是看吸脱附曲线。

吸附量是否随着分压增加而增加,吸脱附曲线是否闭合;但是吸脱附曲线也要结合样品性质来判断,比如样品加入量,脱气温度,样品孔结构等。

更多科研干货教程,可以点击下面链接获取哦~

BET测试

这篇关于BET数据处理中8大案例分析,教你看懂吸脱附曲线【内含干货】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/371774

相关文章

Hadoop企业开发案例调优场景

需求 (1)需求:从1G数据中,统计每个单词出现次数。服务器3台,每台配置4G内存,4核CPU,4线程。 (2)需求分析: 1G / 128m = 8个MapTask;1个ReduceTask;1个mrAppMaster 平均每个节点运行10个 / 3台 ≈ 3个任务(4    3    3) HDFS参数调优 (1)修改:hadoop-env.sh export HDFS_NAMENOD

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

【区块链 + 人才服务】区块链集成开发平台 | FISCO BCOS应用案例

随着区块链技术的快速发展,越来越多的企业开始将其应用于实际业务中。然而,区块链技术的专业性使得其集成开发成为一项挑战。针对此,广东中创智慧科技有限公司基于国产开源联盟链 FISCO BCOS 推出了区块链集成开发平台。该平台基于区块链技术,提供一套全面的区块链开发工具和开发环境,支持开发者快速开发和部署区块链应用。此外,该平台还可以提供一套全面的区块链开发教程和文档,帮助开发者快速上手区块链开发。

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号