【数学】 4、向量的内积、外积、模长

2023-11-08 06:20

本文主要是介绍【数学】 4、向量的内积、外积、模长,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、向量点乘(内积)
    • 1.1 几何意义
    • 1.2 点乘的代数定义,推导几何定义(用于求向量夹角)
      • 1.2.1 余弦定理
    • 1.3 程序计算
  • 二、向量叉乘(外积)
    • 2.1 几何意义
  • 三、通俗理解内积和外积
  • 四、向量的模长

向量点乘、叉乘的概念和意义

一、向量点乘(内积)

点乘(Dot Product)的结果是点积,又称数量积或标量积(Scalar Product)。


1.1 几何意义

1.2 点乘的代数定义,推导几何定义(用于求向量夹角)

1.2.1 余弦定理

余弦定理

1.3 程序计算

vector1 = [1.1, 2.2, 3.3]
vector2 = [4, 6, 7]
dot_product = np.dot(vector1, vector2) # 算向量内积
norm1, norm2 = np.linalg.norm(vector1), np.linalg.norm(vector2) # 算向量模长
similarity = dot_product / (norm1 * norm2) # 算向量间的余弦相似度

向量的内积也被称为点积,是两个向量相乘的一种方式。对于两个n维的向量,比如向量a=(a1, a2, …, an)和向量b=(b1, b2, …, bn),它们的内积可以通过以下公式计算:

a·b = a1b1 + a2b2 + … + an*bn

这个公式表示的是将两个向量对应位置的元素相乘,然后将所有的乘积相加。结果是一个标量,而不是一个向量。

这个计算在很多领域都有重要应用,比如在物理学中,力的内积可以用来计算功,而在计算机科学中,内积常常被用于计算向量的相似度。

package main
import ("fmt""math"
)func vectorMagnitude(vec []float64) float64 {sum := 0.0for _, v := range vec {sum += v * v}return math.Sqrt(sum)
}func main() {vec := []float64{1, 2, 3}fmt.Println("Magnitude of the vector:", vectorMagnitude(vec))
}

二、向量叉乘(外积)

叉乘(Cross Product)又称向量积(Vector Product)

2.1 几何意义

三、通俗理解内积和外积

内积是把a向量投影到b向量上面,让两者同向或者反向,让a向量箭头指向b向量里面,所以叫内积,(非官方,本人感受,同直线情况广义指向内里),外积是把a向量投影到b向量的法线方向,所以你看,投影完箭头指向了b向量的外面,所以你看透彻理解多重要,字面意思就都理解了有木有,另外,内积两个向量谁投影谁都没关系,因为最后是一个数值,不影响结果,外积就不一样了,一定是1投影2,因为要用右手确定结果3向量的方向,有前后顺序之分,更像是1带2的扭矩方向的感觉

四、向量的模长

向量的模长,也被称作向量的大小或者绝对值,是用来描述向量的长度的数学概念。在二维平面上,一个向量可以被视作箭头或者线段,而向量的模长就是箭头或线段的长度。在高维空间中,虽然我们无法直观地看到向量,但是我们仍然可以通过计算来得到向量的模长。

对于一个n维向量v = (v1, v2, …, vn),其模长||v||可以通过以下公式计算:

∣ ∣ v ∣ ∣ = s q r t ( v 1 2 + v 2 2 + . . . + v n 2 ) ||v|| = sqrt(v1^2 + v2^2 + ... + vn^2) ∣∣v∣∣=sqrt(v12+v22+...+vn2)

这里的sqrt表示平方根函数。所以,向量的模长实际上就是其各分量平方和的平方根。

这篇关于【数学】 4、向量的内积、外积、模长的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/368323

相关文章

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=

uva 11044 Searching for Nessy(小学数学)

题意是给出一个n*m的格子,求出里面有多少个不重合的九宫格。 (rows / 3) * (columns / 3) K.o 代码: #include <stdio.h>int main(){int ncase;scanf("%d", &ncase);while (ncase--){int rows, columns;scanf("%d%d", &rows, &col

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

Vector3 三维向量

Vector3 三维向量 Struct Representation of 3D vectors and points. 表示3D的向量和点。 This structure is used throughout Unity to pass 3D positions and directions around. It also contains functions for doin

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)

CSP-J基础之数学基础 初等数论 一篇搞懂(一)

文章目录 前言声明初等数论是什么初等数论历史1. **古代时期**2. **中世纪时期**3. **文艺复兴与近代**4. **现代时期** 整数的整除性约数什么样的整数除什么样的整数才能得到整数?条件:举例说明:一般化: 判断两个数能否被整除 因数与倍数质数与复合数使用开根号法判定质数哥德巴赫猜想最大公因数与辗转相除法计算最大公因数的常用方法:举几个例子:例子 1: 计算 12 和 18

2024年AMC10美国数学竞赛倒计时两个月:吃透1250道真题和知识点(持续)

根据通知,2024年AMC10美国数学竞赛的报名还有两周,正式比赛还有两个月就要开始了。计划参赛的孩子们要记好时间,认真备考,最后冲刺再提高成绩。 那么如何备考2024年AMC10美国数学竞赛呢?做真题,吃透真题和背后的知识点是备考AMC8、AMC10有效的方法之一。通过做真题,可以帮助孩子找到真实竞赛的感觉,而且更加贴近比赛的内容,可以通过真题查漏补缺,更有针对性的补齐知识的短板。