CF342E Xenia and Tree 题解 (根号算法,操作分块)

2023-11-08 01:01

本文主要是介绍CF342E Xenia and Tree 题解 (根号算法,操作分块),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

题面

简要题意:
       给定一棵 n n n 个节点的树,初始时 1 1 1 号节点为红色,其余为蓝色。
       要求支持如下操作:
       1. 将一个节点变为红色。
       2. 询问节点 u u u 到最近红色节点的距离。
       共 q q q 次操作。
       1 ≤ n , q ≤ 1 0 5 1 \leq n, q \leq 10^5 1n,q105

分析:

       非常 的一道题。
       我们首先考虑一种 修改 O ( n ) O(n) O(n),查询 O ( 1 ) O(1) O(1) 的算法:每次改变一个点的颜色就把它放进队列里跑一遍 bfs,去更新其它点到红点的最小值。

       接着我们考虑一种 修改 O ( 1 ) O(1) O(1),查询 O ( n ) O(n) O(n) 的算法:每次 O ( 1 ) O(1) O(1) 标记一个点是否为红色。然后每次查询枚举红色的点并计算距离,时间复杂度是 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n) 的。

       我们考虑如何平衡这两种算法。

       因为 bfs 可以在 O ( n ) O(n) O(n) 的复杂度内跑 多个终点的最短路,因此我们可以将红点储存起来一起跑bfs。所以可以对操作进行分块。
       设块长为 S S S,我们每一次从当前块到下一块时,我们把当前块的 所有染红操作的点 放进队列里面跑 bfs 更新 其它点的 d i s dis dis 值。然后对于当前块的询问,我们扫块内的所有操作,如果为 1 1 1 操作,那么我们 O ( l o g 2 n ) O(log_2n) O(log2n) 的复杂度内查出询问点和修改点的距离并与 d i s dis dis 数组取 m i n min min 即可。
       时间复杂度是 O ( q S × n + q × S × l o g 2 n ) O(\frac{q}{S} \times n + q \times S \times log_2n) O(Sq×n+q×S×log2n) 的,当 S = n l o g 2 n S = \sqrt{\frac{n}{log_2n}} S=log2nn 时复杂度最小,为 O ( q n l o g 2 n ) O(q\sqrt{nlog_2n}) O(qnlog2n )

CODE:

#include<bits/stdc++.h>// 好题 
#define pb push_back
using namespace std;
const int N = 1e5 + 10;
typedef pair< int, int > PII;
int n, Q, dis[N], blo, op, x, bl, u, v, dep[N], fa[N][25];
inline int read(){int x = 0, f = 1; char c = getchar();while(!isdigit(c)){if(c == '-') f = -1; c = getchar();}while(isdigit(c)){x = (x << 1) + (x << 3) + (c ^ 48); c = getchar();}return x * f;
}
vector< int > E[N];
vector< PII > vec[N];
queue< int > q;
void dfs(int x, int fat){dep[x] = dep[fat] + 1; fa[x][0] = fat;for(int i = 1; i <= 20; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1];for(auto v : E[x]){if(v == fat) continue;dfs(v, x);}
}
int LCA(int x, int y){if(dep[x] < dep[y]) swap(x, y);for(int i = 20; i >= 0; i--){if(dep[fa[x][i]] >= dep[y]) x = fa[x][i];} if(x == y) return x;for(int i = 20; i >= 0; i--){if(fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];}return fa[x][0];
}
void bfs(){while(!q.empty()){int u = q.front(); q.pop();for(auto v : E[u]){if(dis[v] > dis[u] + 1){dis[v] = dis[u] + 1;q.push(v);}}}
}
int main(){memset(dis, 0x3f, sizeof dis);n = read(), Q = read();for(int i = 1; i < n; i++){u = read(), v = read();E[u].pb(v); E[v].pb(u);}dfs(1, 0);blo = max(1, (int)sqrt(1.0 * n / log2(n)));for(int i = 1; i <= Q; i++){op = read(), x = read();bl = (i - 1) / blo + 1;vec[bl].pb(make_pair(op, x));}dis[1] = 0;q.push(1);bfs();for(int i = 1; i <= bl; i++){for(int j = 0; j < vec[i].size(); j++){int op = vec[i][j].first, x = vec[i][j].second;if(op == 1) dis[x] = 0, q.push(x);else{int y = dis[x];for(int k = 0; k < j; k++){if(vec[i][k].first == 1) y = min(y, dep[x] + dep[vec[i][k].second] - 2 * dep[LCA(vec[i][k].second, x)]); }printf("%d\n", y);}}bfs();}return 0;
}

这篇关于CF342E Xenia and Tree 题解 (根号算法,操作分块)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/367052

相关文章

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解