模电基础:一文彻底搞懂二极管击穿和结电容

2023-11-08 00:50

本文主要是介绍模电基础:一文彻底搞懂二极管击穿和结电容,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模电基础:二极管击穿和结电容:


知识准备:

  • 二极管伏安特性曲线:

在这里插入图片描述

关于参杂浓度对耗尽层宽窄与耗尽层中的电荷密度影响:

  • 熵增定律:

物理学中有一个定理叫做熵增定理,这个定理也可以理解为物质总是向趋于混乱的程度发展的,由整齐向混乱发展,那么问题又来了,何为整齐,何为混乱?对于整齐,可以理解为局部较强,比如班里的学生上课都的集中在一个教室,这就叫局部性强,下课铃响了,同学们都散了,有得去餐厅,有的去图书馆,有得去操场,这就叫局部性弱,即所谓的混乱(相对上课而言).再举个例子,在一个系统中,温度总是向趋于恒温的方向发展的,温度相对高的局部会向温度相对低的局部传递热量来趋向恒温的趋势,来削弱系统电局部性.和温度一样,浓度也是向趋于恒浓度的方向发展的.所以熵增定律的另外一个描述:物质总是有弱化局部性的趋势

  • 由熵增定律的浓度描述来解释一下有关pn结参杂浓度的问题:

为了削弱局部性,对于p区和n区,如果参杂浓度较高(即多子浓度较高),那么为了削弱局部性,可以有两种途径,第一,增大体积来减小浓度,这对应着p区和n区的体积较大,而总体积一定,所以耗尽层的体积相对较少;第二,扩散运动较强,更多的多子通过扩散运动在耗尽层形成更多的空间电荷,对应空间电荷的浓度更高.
由此可见,参杂浓度高不仅仅导致耗尽层变窄,还会导致耗尽层中的电荷浓度也变高

有了pn接参杂浓度相关的知识储备,接下来来解释二极管击穿的相关问题就会轻松很多了


二极管击穿:

  • 雪崩击穿:

随着反向电压增大,耗尽层中会越来越宽,耗尽层中的载流子(主要是少子,内建电场越来越强,对多子电阻碍作用越来越大,对少子的促进作用越来越大)会撞击中性原子产生新的电子和空穴,新的电子和空穴继续在内建电场的作用下撞击,引发连锁反应,使得载流子浓度急剧增大,进而使pn结电流急剧增大,称之为雪崩击穿

  • 齐纳击穿:

随着反向电压增大,耗尽层中会越来越宽,内建电场变得很强,在电场力的作用下直接把耗尽层中的中性原子共价键破坏,产生电子和空穴,使得载流子浓度急剧增大,进而使pn结电流急剧增大,称之为齐纳击穿

  • 雪崩击穿与齐纳击穿的区别与联系:

联系:都是击穿(哈哈!)
区别:产生条件不同:通过产生的原因,可以分析出:由于雪崩击穿需要碰撞产生连锁反应,因此只有参杂浓度较低,也就是耗尽层较宽才有更大概率发生碰撞;而齐纳击穿需要更强的电场才会发生,着需要空间电荷区(即耗尽层)的电荷浓度更高,来产生更强的内建电厂,所以要求参杂浓度较高.但是实际上两种击穿一般都是同时发生的,只不过在参杂浓度较高的时候,大部分是齐纳击穿,在参杂浓度较低的时候,大部分是雪崩击穿

结电容:

二极管的结电容分为势垒电容和扩散电容,下面将分别介绍他们:

  • 势垒电容:

在pn结反偏时,耗尽层变宽,增大反偏电压,耗尽层变得更宽,减小反偏电压,耗尽层相对变窄.耗尽层中主要是不能移动的电荷,所以变窄变宽的过程可以等效为电容等放电和充电过程,将这个等效电容称之为势垒电容.由此可见,势垒电容是由于空间电荷区的宽窄变化产生的,而正偏的时候空间电荷区很窄,势垒电容很小,可以近似忽略,这也是为什么势垒电容主要产生在pn结反偏低时候的原因

  • 扩散电容:

扩散电容:一看名字就知道,扩散电容是由于扩散运动产生的,pn结正偏主要发生的是扩散运动.在pn结正偏的时候,非平衡少子的扩散运动经过耗尽层之后,会在在p区和n区形成从耗尽层交界面向远离交界面的区域递减的浓度梯度这个非平衡少子的浓度梯度随外加正偏电压的变化而变化,压增大,浓度梯度也增大扩散区浓度梯度的变化等效为电容充放电的过程(电容效应)称这样的电容效应为扩散电容

  • 势垒电容与扩散电容区别与联系:

联系:两者都具有电容效应
区别:势垒电容是由于空间电荷区的宽窄变化来产生的,而正偏的时候空间电荷区很窄,势垒电容很小,近似可以忽略,即势垒电容主要产生在pn结反偏时期;扩散电容是靠非平衡少子的扩散运动形成的浓度梯度产生的,反偏时主要是平衡少子在运动,耗尽层的宽度很宽,内建电场限制着非平衡少子的扩散运动,基本可以忽略,因此扩散运动主要产生在pn接正篇时期

这篇关于模电基础:一文彻底搞懂二极管击穿和结电容的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/367025

相关文章

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

C 语言基础之数组

文章目录 什么是数组数组变量的声明多维数组 什么是数组 数组,顾名思义,就是一组数。 假如班上有 30 个同学,让你编程统计每个人的分数,求最高分、最低分、平均分等。如果不知道数组,你只能这样写代码: int ZhangSan_score = 95;int LiSi_score = 90;......int LiuDong_score = 100;int Zhou

c++基础版

c++基础版 Windows环境搭建第一个C++程序c++程序运行原理注释常亮字面常亮符号常亮 变量数据类型整型实型常量类型确定char类型字符串布尔类型 控制台输入随机数产生枚举定义数组数组便利 指针基础野指针空指针指针运算动态内存分配 结构体结构体默认值结构体数组结构体指针结构体指针数组函数无返回值函数和void类型地址传递函数传递数组 引用函数引用传参返回指针的正确写法函数返回数组

【QT】基础入门学习

文章目录 浅析Qt应用程序的主函数使用qDebug()函数常用快捷键Qt 编码风格信号槽连接模型实现方案 信号和槽的工作机制Qt对象树机制 浅析Qt应用程序的主函数 #include "mywindow.h"#include <QApplication>// 程序的入口int main(int argc, char *argv[]){// argc是命令行参数个数,argv是

【MRI基础】TR 和 TE 时间概念

重复时间 (TR) 磁共振成像 (MRI) 中的 TR(重复时间,repetition time)是施加于同一切片的连续脉冲序列之间的时间间隔。具体而言,TR 是施加一个 RF(射频)脉冲与施加下一个 RF 脉冲之间的持续时间。TR 以毫秒 (ms) 为单位,主要控制后续脉冲之前的纵向弛豫程度(T1 弛豫),使其成为显著影响 MRI 中的图像对比度和信号特性的重要参数。 回声时间 (TE)