跑通YOLO-Fastest

2023-11-07 18:40
文章标签 yolo 跑通 fastest

本文主要是介绍跑通YOLO-Fastest,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

跑通YOLO-Fastest

一、代码来源

https://github.com/dog-qiuqiu/Yolo-Fastest

二、环境配置

1.win10
2.cuda10.2+cudnn
3.opencv451
4.vs2015
5.cmake

三、编译代码

1.修改Makefile配置

GPU=1
CUDNN=1
CUDNN_HALF=0
OPENCV=1
AVX=1
OPENMP=0
LIBSO=0
ZED_CAMERA=0
ZED_CAMERA_v2_8=0

主要根据自己的环境设置GPU=1;CUDNN=1;CUDNN_HALF=0;OPENCV=1四项,1为启用。
2.Cmake
1)打开Cmake,配置
在这里插入图片描述
资源和目标路径都指定到yolo-fastest文件夹。
2)点击configure,选用vs2015和x64平台。
3)点击finish既可。
4)点击generate
注:提示opencv错误,但是实际上电脑配置了opencv时,可以修改Environment中的opencv路径

3.vs2015
1)打开下面ALL_BUILD.vcxproj
在这里插入图片描述
生成既可
在这里插入图片描述
成功后会生成Release文件夹
在这里插入图片描述
打开Release文件夹,把里面编译完成的darknet.dll和darknet.exe复制到Yolo-Fastest/build/darknet/x64目录下;
把ModelZoo\yolo-fastest-1.1_coco目录下的4个文件复制到Yolo-Fastest/build/darknet/x64/cfg目录下;
在这里插入图片描述

四、测试

build/darknet/x64文件夹下打开命令行窗口
图片测试

 darknet.exe detector test ./cfg/coco.data ./cfg/yolo-fastest-1.1.cfg ./cfg/yolo-fastest-1.1.weights ./data/person.jpg 

结果
在这里插入图片描述
注意:这里yolo-fastest-1.1.cfg 和yolo-fastest-1.1.weights要改成自己选用的。
视频测试

 darknet.exe detector demo ./cfg/coco.data ./cfg/yolo-fastest-1.1.cfg ./cfg/yolo-fastest-1.1.weights ./data/test_car.mp4

需要下载对应视频

这篇关于跑通YOLO-Fastest的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365562

相关文章

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

[数据集][目标检测]智慧农业草莓叶子病虫害检测数据集VOC+YOLO格式4040张9类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4040 标注数量(xml文件个数):4040 标注数量(txt文件个数):4040 标注类别数:9 标注类别名称:["acalcerosis","fertilizer","flower","fruit","grey

【YOLO 系列】基于YOLOV8的智能花卉分类检测系统【python源码+Pyqt5界面+数据集+训练代码】

前言: 花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别

水面垃圾检测数据集 3000张 水面垃圾 带标注 voc yolo

数据集概述 该数据集包含3000张图像,专注于水面垃圾的检测。数据集已经按照VOC(Visual Object Classes)和YOLO(You Only Look Once)两种格式进行了标注,适用于训练深度学习模型,特别是物体检测模型,用于识别水面上的各种垃圾。 数据集特点 多样性:包含3000张图像,涵盖了多种类型的水面垃圾,确保模型能够识别各种类型的垃圾。双标注格式:提供VO

[数据集][目标检测]抽烟检测数据集VOC+YOLO格式22559张2类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):22559 标注数量(xml文件个数):22559 标注数量(txt文件个数):22559 标注类别数:2 标注类别名称:["cig-pack","smoke"] 每个类别标注的框数: cig-pack 框数 = 2

[数据集][目标检测]人脸口罩佩戴目标检测数据集VOC+YOLO格式8068张3类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):8068 标注数量(xml文件个数):8068 标注数量(txt文件个数):8068 标注类别数:3 标注类别名称:["face_with_mask","face_without_mask","mask"] 每个类别

CVPR 2024最新论文分享┆YOLO-World:一种实时开放词汇目标检测方法

论文分享简介 本推文主要介绍了CVPR 2024上的一篇论文《YOLO-World: Real-Time Open-Vocabulary Object Detection》,论文的第一作者为Tianheng Cheng和Lin Song,该论文提出了一种开放词汇目标检测的新方法,名为YOLO-World。论文通过引入视觉-语言建模和大规模预训练解决了传统YOLO检测器在固定词汇检测中的局限性。论

[数据集][目标检测]井盖丢失未盖破损检测数据集VOC+YOLO格式2890张5类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2890 标注数量(xml文件个数):2890 标注数量(txt文件个数):2890 标注类别数:5 标注类别名称:["broke","circle","good","lose","uncovered"] 每个类别标

YOLO缺陷检测学习笔记(3)

文章目录 PCA主成分分析PCA的核心思想PCA的步骤PCA降维后的数据表达示例数据Step 1:标准化数据 Step 2:计算协方差矩阵Step 3:计算协方差矩阵的特征值和特征向量Step 4:选择主成分Step 5:将数据映射到主成分总结PCA的应用PCA的局限性 AUC和ROC1. ROC 曲线2. AUC 随机森林1. **随机森林的基本概念**2. **随机森林的优点**3. *