YOLO-Fastest训练自己的数据

2023-11-07 18:40
文章标签 数据 训练 yolo fastest

本文主要是介绍YOLO-Fastest训练自己的数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLO-Fastest训练自己的数据

继续yolo-fastest的学习,上一篇已经基本跑通了yolo-fastest,接下来开始训练,本次代码依旧是:https://github.com/dog-qiuqiu/Yolo-Fastest
吐槽一句,这个代码里面怎么啥都有,感觉好乱啊!刚开始看的时候一脸懵逼,反复确认才明白没下载错代码。
然后作者官方Readme只要简简单单的一两句话介绍训练,估计是要逼死小白!
在这里插入图片描述

一、配置环境

1.win10
2.cuda10.2+cudnn
3.opencv451
4.vs2015
5.cmake

二、数据集制作

(1)制作工具
labelImg(这个就不展开说了),标注完成后获得一大堆标注文件(xml格式)。
在这里插入图片描述
(2)数据格式转换
上一步中,获得的数据是满足voc数据要求的,但是对于yolo系列,需要做一些处理。
1)新建mydata文件夹,在该文件下继续新建data文件夹,data文件下继续新建Annotations、images、ImageSets(里面再建Main文件夹)、labels。如图
在这里插入图片描述
继续新建脚本文件makedata.py文件

import os
import randomtrainval_percent = 0.2   #可自行进行调节
train_percent = 1
xmlfilepath = 'Annotations'
txtsavepath = 'ImageSets\Main'
total_xml = os.listdir(xmlfilepath)num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)#ftrainval = open('ImageSets/Main/trainval.txt', 'w')
ftest = open('ImageSets/Main/test.txt', 'w')
ftrain = open('ImageSets/Main/train.txt', 'w')
#fval = open('ImageSets/Main/val.txt', 'w')for i in list:name = total_xml[i][:-4] + '\n'if i in trainval:#ftrainval.write(name)if i in train:ftest.write(name)#else:#fval.write(name)else:ftrain.write(name)#ftrainval.close()
ftrain.close()
#fval.close()
ftest.close()

继续新建脚本voc_label.py,这个脚本文件和data文件夹同级。
在这里插入图片描述

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import joinsets = ['train', 'test']classes = ['QR']  #自己训练的类别def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0y = (box[2] + box[3]) / 2.0w = box[1] - box[0]h = box[3] - box[2]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)def convert_annotation(image_id):in_file = open('data/Annotations/%s.xml' % (image_id))out_file = open('data/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')wd = getcwd()
for image_set in sets:if not os.path.exists('data/labels/'):os.makedirs('data/labels/')image_ids = open('data/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('data/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write('data/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

注意:1.修改一下自己的训练类别,我的只有一个类别QR
2.倒数第三行,图像格式需要对应
依次运行上面两个脚本,既可获得满足yolo的数据格式。
在这里插入图片描述
第一个数值是类别编号,后面四个值分别是左上点和右下点的归一化后的坐标。

三、yolo-fastest准备工作

(1).复制数据集
将上面获得的data文件夹直接复制到Yolo-Fastest-master\build\darknet\x64文件下。
在这里插入图片描述
(2).修改配置文件
在Yolo-Fastest-master\build\darknet\x64\cfg文件夹下找到yolo-fastest-1.1.cfg(也可以是其他的,后面对应修改就行)。
1.修改batch和subdivisions参数。

[net]
batch=16
subdivisions=8
width=320
height=320
channels=3

2.filters参数,只需要修改两处的,千万别全改了!

########修改858行和926行
########filters=(cls_num+5)*3
[convolutional]
size=1
stride=1
pad=1
filters=18
activation=linear

(3).新建.data和.names文件。
在Yolo-Fastest-master\build\darknet\x64\data文件夹中新建data和names文件。
在这里插入图片描述
我的是QR.data和QR.names。data文件如下

classes= 1
train  = data/train.txt
valid  = data/test.txt
#valid = data/coco_val_5k.list
names = data/QR.names
backup = backup/

只要找到你的train.txt和test.txt文件就行。这两个txt文件实际上也是图像的引索路径。
在这里插入图片描述
names文件里面换成自己的类别就行

四、训练yolo-fastest

(1)生成预训练模型
Yolo-Fastest-master\build\darknet\x64文件夹下新建pretrained_model文件夹,之后在该文件夹下会生成预训练模型。新建一个QR.bat文件,写入如下指令后双击既可(话说这样子运行指令感觉还不错)

darknet partial cfg\yolo-fastest-1.1.cfg cfg\yolo-fastest-1.1.weights pretrained_model\yolo-fastest-1.1.conv.109 109
pause

在这里插入图片描述

会在上述文件夹生成预训练权重文件(这文件真的是太小了,简直amazing
在这里插入图片描述
(2)正式训练
继续在Yolo-Fastest-master\build\darknet\x64文件夹下新建QRtrain.bat文件,并写入

darknet detector train data\QR.data cfg\yolo-fastest-1.1.cfg pretrained_model\yolo-fastest-1.1.conv.109 backup\
pause

双击QRtrain.bat既可开始训练,如图
在这里插入图片描述
多说一句,旁边那个记录loss的图像,只有loss下降到了18后才会有数值,但是刚开始loss值很大,不会有动静,不要以为是模型有问题,等着loss下降既可。在backup中会生成权重文件。
在这里插入图片描述
接下来测试一下

darknet.exe detector test ./data/QR.data ./cfg/yolo-fastest-1.1.cfg ./backup/yolo-fastest-1_last.weights ./data/QR-00064.jpg

在这里插入图片描述
效果有点不好说,但是据说移动端会很快,所以接下来继续想着部署了。
在这里插入图片描述
看完了点个赞呗!

这篇关于YOLO-Fastest训练自己的数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/365561

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.