深入理解强化学习——多臂赌博机:非平稳问题

2023-11-07 02:36

本文主要是介绍深入理解强化学习——多臂赌博机:非平稳问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类目录:《深入理解强化学习》总目录


到目前为止我们讨论的取平均方法对平稳的赌博机问题是合适的,即收益的概率分布不随着时间变化的赌博机问题。但如果赌博机的收益概率是随着时间变化的,该方法就不合适。如前所述,我们经常会遇到非平稳的强化学习问题。在这种情形下,给近期的收益赋予比过去很久的收益更高的权值就是一种合理的处理方式。最流行的方法之一是使用固定步长。比如说,用于更新 n − 1 n-1 n1个过去的收益的均值 Q n Q_n Qn的增量更新规则可以改为:
Q n + 1 = Q n + α [ R n − Q n ] Q_{n+1}=Q_n+\alpha[R_n-Q_n] Qn+1=Qn+α[RnQn]

式中,步长参数 α ∈ ( 0 , 1 ] \alpha\in(0, 1] α(0,1]是一个常数。这使得 Q n + 1 Q_{n+1} Qn+1成为对过去的收益和初始的估计 Q 1 Q_1 Q1的加权平均。我们将此称为加权平均,因为我们可以验证权值的和是 ( 1 − α ) n + ∑ i = 1 n α ( 1 − α ) n − 1 = 1 (1-\alpha)^n+\sum_{i=1}^n\alpha(1-\alpha)^{n-1}=1 (1α)n+i=1nα(1α)n1=1。需要注意的是,赋给收益垃的权值 R i R_i Ri的权重依赖于它被观测到的具体时刻与当前时刻的差,即 n − i n-i ni 1 − α 1-\alpha 1α小于1,因此赋予的权值随着相隔次数的增加而递减。事实上,由于 ( 1 − α ) (1-\alpha) (1α)上的指数,权值以指数形式递减(如果 1 − α = 0 1-\alpha=0 1α=0,根据约定 0 0 = 1 0^0=1 00=1,则所有的权值都赋给最后一个收益 R i R_i Ri。正因为如此,这个方法有时候也被称为指数近因加权平均。

有时候随着时刻一步步改变步长参数是很方便的。设 α n ( a ) \alpha_n(a) αn(a)表示用于处理第 n n n次选择动作 a a a后收到的收益的步长参数。正如我们注意到的,选择 α n ( a ) = 1 n \alpha_n(a)=\frac{1}{n} αn(a)=n1会得到采样平均法,大数定律保证它可以收敛到真值。然而,收敛性当然不能保证对任何 { α n ( a ) } \{\alpha_n(a)\} {αn(a)}序列都满足。随机逼近理论中的一个著名结果给出了保证收敛概率为1所需的条件:
∑ i = 1 ∞ α n ( a ) = ∞ 且 ∑ i = 1 ∞ α n 2 ( a ) < ∞ \sum_{i=1}^\infty\alpha_n(a)=\infty\quad\text{且}\quad\sum_{i=1}^\infty\alpha^2_n(a)<\infty i=1αn(a)=i=1αn2(a)<

第一个条件是要求保证有足够大的步长,最终克服任何初始条件或随机波动。第二个条件保证最终步长变小,以保证收敛。两个收敛条件在采样平均的案例 α n ( a ) = 1 n \alpha_n(a)=\frac{1}{n} αn(a)=n1中都得到了满足,但在常数步长参数 α n ( a ) = α \alpha_n(a)=\alpha αn(a)=α中不满足。在后面一种情况下,第二个条件无法满足,说明估计永远无法完全收敛,而是会随着最近得到的收益而变化。正如我们前面提到的,在非平稳环境中这是我们想要的,而且强化学习中的问题实际上常常是非平稳的。此外,符合上述条件的步长参数序列常常收敛得很慢,或者需要大量的调试才能得到一个满意的收敛率。尽管在理论工作中很常用,但符合这些收敛条件的步长参数序列在实际应用和实验研究中很少用到。

参考文献:
[1] 张伟楠, 沈键, 俞勇. 动手学强化学习[M]. 人民邮电出版社, 2022.
[2] Richard S. Sutton, Andrew G. Barto. 强化学习(第2版)[M]. 电子工业出版社, 2019
[3] Maxim Lapan. 深度强化学习实践(原书第2版)[M]. 北京华章图文信息有限公司, 2021
[4] 王琦, 杨毅远, 江季. Easy RL:强化学习教程 [M]. 人民邮电出版社, 2022

这篇关于深入理解强化学习——多臂赌博机:非平稳问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/360675

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监