深入理解强化学习——多臂赌博机:非平稳问题

2023-11-07 02:36

本文主要是介绍深入理解强化学习——多臂赌博机:非平稳问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类目录:《深入理解强化学习》总目录


到目前为止我们讨论的取平均方法对平稳的赌博机问题是合适的,即收益的概率分布不随着时间变化的赌博机问题。但如果赌博机的收益概率是随着时间变化的,该方法就不合适。如前所述,我们经常会遇到非平稳的强化学习问题。在这种情形下,给近期的收益赋予比过去很久的收益更高的权值就是一种合理的处理方式。最流行的方法之一是使用固定步长。比如说,用于更新 n − 1 n-1 n1个过去的收益的均值 Q n Q_n Qn的增量更新规则可以改为:
Q n + 1 = Q n + α [ R n − Q n ] Q_{n+1}=Q_n+\alpha[R_n-Q_n] Qn+1=Qn+α[RnQn]

式中,步长参数 α ∈ ( 0 , 1 ] \alpha\in(0, 1] α(0,1]是一个常数。这使得 Q n + 1 Q_{n+1} Qn+1成为对过去的收益和初始的估计 Q 1 Q_1 Q1的加权平均。我们将此称为加权平均,因为我们可以验证权值的和是 ( 1 − α ) n + ∑ i = 1 n α ( 1 − α ) n − 1 = 1 (1-\alpha)^n+\sum_{i=1}^n\alpha(1-\alpha)^{n-1}=1 (1α)n+i=1nα(1α)n1=1。需要注意的是,赋给收益垃的权值 R i R_i Ri的权重依赖于它被观测到的具体时刻与当前时刻的差,即 n − i n-i ni 1 − α 1-\alpha 1α小于1,因此赋予的权值随着相隔次数的增加而递减。事实上,由于 ( 1 − α ) (1-\alpha) (1α)上的指数,权值以指数形式递减(如果 1 − α = 0 1-\alpha=0 1α=0,根据约定 0 0 = 1 0^0=1 00=1,则所有的权值都赋给最后一个收益 R i R_i Ri。正因为如此,这个方法有时候也被称为指数近因加权平均。

有时候随着时刻一步步改变步长参数是很方便的。设 α n ( a ) \alpha_n(a) αn(a)表示用于处理第 n n n次选择动作 a a a后收到的收益的步长参数。正如我们注意到的,选择 α n ( a ) = 1 n \alpha_n(a)=\frac{1}{n} αn(a)=n1会得到采样平均法,大数定律保证它可以收敛到真值。然而,收敛性当然不能保证对任何 { α n ( a ) } \{\alpha_n(a)\} {αn(a)}序列都满足。随机逼近理论中的一个著名结果给出了保证收敛概率为1所需的条件:
∑ i = 1 ∞ α n ( a ) = ∞ 且 ∑ i = 1 ∞ α n 2 ( a ) < ∞ \sum_{i=1}^\infty\alpha_n(a)=\infty\quad\text{且}\quad\sum_{i=1}^\infty\alpha^2_n(a)<\infty i=1αn(a)=i=1αn2(a)<

第一个条件是要求保证有足够大的步长,最终克服任何初始条件或随机波动。第二个条件保证最终步长变小,以保证收敛。两个收敛条件在采样平均的案例 α n ( a ) = 1 n \alpha_n(a)=\frac{1}{n} αn(a)=n1中都得到了满足,但在常数步长参数 α n ( a ) = α \alpha_n(a)=\alpha αn(a)=α中不满足。在后面一种情况下,第二个条件无法满足,说明估计永远无法完全收敛,而是会随着最近得到的收益而变化。正如我们前面提到的,在非平稳环境中这是我们想要的,而且强化学习中的问题实际上常常是非平稳的。此外,符合上述条件的步长参数序列常常收敛得很慢,或者需要大量的调试才能得到一个满意的收敛率。尽管在理论工作中很常用,但符合这些收敛条件的步长参数序列在实际应用和实验研究中很少用到。

参考文献:
[1] 张伟楠, 沈键, 俞勇. 动手学强化学习[M]. 人民邮电出版社, 2022.
[2] Richard S. Sutton, Andrew G. Barto. 强化学习(第2版)[M]. 电子工业出版社, 2019
[3] Maxim Lapan. 深度强化学习实践(原书第2版)[M]. 北京华章图文信息有限公司, 2021
[4] 王琦, 杨毅远, 江季. Easy RL:强化学习教程 [M]. 人民邮电出版社, 2022

这篇关于深入理解强化学习——多臂赌博机:非平稳问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/360675

相关文章

基于.NET编写工具类解决JSON乱码问题

《基于.NET编写工具类解决JSON乱码问题》在开发过程中,我们经常会遇到JSON数据处理的问题,尤其是在数据传输和解析过程中,很容易出现编码错误导致的乱码问题,下面我们就来编写一个.NET工具类来解... 目录问题背景核心原理工具类实现使用示例总结在开发过程中,我们经常会遇到jsON数据处理的问题,尤其是

springboot3.4和mybatis plus的版本问题的解决

《springboot3.4和mybatisplus的版本问题的解决》本文主要介绍了springboot3.4和mybatisplus的版本问题的解决,主要由于SpringBoot3.4与MyBat... 报错1:spring-boot-starter/3.4.0/spring-boot-starter-

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

解决java.lang.NullPointerException问题(空指针异常)

《解决java.lang.NullPointerException问题(空指针异常)》本文详细介绍了Java中的NullPointerException异常及其常见原因,包括对象引用为null、数组元... 目录Java.lang.NullPointerException(空指针异常)NullPointer

Android开发中gradle下载缓慢的问题级解决方法

《Android开发中gradle下载缓慢的问题级解决方法》本文介绍了解决Android开发中Gradle下载缓慢问题的几种方法,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、网络环境优化二、Gradle版本与配置优化三、其他优化措施针对android开发中Gradle下载缓慢的问

关于Nginx跨域问题及解决方案(CORS)

《关于Nginx跨域问题及解决方案(CORS)》文章主要介绍了跨域资源共享(CORS)机制及其在现代Web开发中的重要性,通过Nginx,可以简单地解决跨域问题,适合新手学习和应用,文章详细讲解了CO... 目录一、概述二、什么是 CORS?三、常见的跨域场景四、Nginx 如何解决 CORS 问题?五、基

MySQL安装时initializing database失败的问题解决

《MySQL安装时initializingdatabase失败的问题解决》本文主要介绍了MySQL安装时initializingdatabase失败的问题解决,文中通过图文介绍的非常详细,对大家的学... 目录问题页面:解决方法:问题页面:解决方法:1.勾选红框中的选项:2.将下图红框中全部改为英

Nginx启动失败:端口80被占用问题的解决方案

《Nginx启动失败:端口80被占用问题的解决方案》在Linux服务器上部署Nginx时,可能会遇到Nginx启动失败的情况,尤其是错误提示bind()to0.0.0.0:80failed,这种问题通... 目录引言问题描述问题分析解决方案1. 检查占用端口 80 的进程使用 netstat 命令使用 ss

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作