gma 1.x 气候气象指数计算源代码(分享)

2023-11-07 00:12

本文主要是介绍gma 1.x 气候气象指数计算源代码(分享),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本模块的主要内建子模块如下:

如何获得完整代码: 回复博主 或者 留言/私信 。

注意:本代码完全开源,可随意修改使用。 但如果您的成果使用或参考了本段代码,给予一定的引用说明(非强制),包括但不限于:

  • 1.作者:洛
  • 2.网站:gma.luosgeo.com
  • 3.PyPI:https://pypi.org/project/gma/
  • 3.GitHub:https://github.com/LiChongrui

其中:

clindex:气候指标计算函数
cmana:气候诊断函数
et0:蒸散计算函数
static:气候常量
utils:通用工具

示例代:1:

from ..core.arraypro import *
from .utils import *#################################### 累积概率计算
def GammaCP(Data, Axis):'''gamma 分布累积概率'''if np.nanmin(Data) < 0:Data = Data + np.abs(np.nanmin(Data)) * 2    # Data = Data + 1000PF = ParameterFitting(Data, Axis = Axis)Data = PF.DataAxis = PF.Axis# 计算 0 值概率并填充 0 值 为 NaNZeros = (Data == 0).sum(axis = Axis, keepdims = True)ProbabilitiesOfZero = Zeros / Data.shape[Axis]Data[Data == 0] = np.nanAlphas, Betas = ParameterFitting(Data, Axis = Axis).MLE()# 使用gamma CDF 查找 gamma 概率值GammaProbabilities = stats.gamma.cdf(Data, a = Alphas, scale = Betas)Probabilities = ProbabilitiesOfZero + (1 - ProbabilitiesOfZero) * GammaProbabilitiesreturn Probabilities def LogLogisticCP(Data, Axis):'''Log-Logistic 分布累积概率'''PF = ParameterFitting(Data, Axis)Alpha, Beta, Gamma1 = PF.LMoment()Probabilities = 1 / (1 + (Alpha / (PF.Data - Gamma1)) ** Beta)# 由于 scipy 对 non 值处理过于简单,这里不使用 scipy 的函数# Probabilities = stats.fisk.cdf(PF.Data, Beta, loc = Gamma1, scale = Alpha)return Probabilitiesdef Pearson3CP(Data, Axis):'''pearson III 分布累积概率'''if np.nanmin(Data) < 0:Data = Data + np.abs(np.nanmin(Data)) * 2    PF = ParameterFitting(Data, Axis)Data = PF.DataAxis = PF.Axis  Loc, Scale, Skew = PF.LMoment2()Alpha = 4.0 / (Skew ** 2)MINPossible = Loc - ((Alpha * Scale * Skew) / 2.0)Zeros = (Data == 0).sum(axis = Axis, keepdims = True)ProbabilitiesOfZero = Zeros / Data.shape[Axis]Probabilities = stats.pearson3.cdf(Data, Skew, Loc, Scale)Probabilities[(Data < 0.0005) & (ProbabilitiesOfZero > 0.0)] = 0.0Probabilities[(Data < 0.0005) & (ProbabilitiesOfZero <= 0.0)] = 0.0005Probabilities[(Data <= MINPossible) & (Skew >= 0)] = 0.0005Probabilities[(Data >= MINPossible) & (Skew < 0)] = 0.9995Probabilities = ProbabilitiesOfZero + (1.0 - ProbabilitiesOfZero) * Probabilitiesreturn Probabilitiesdef _ReshapeAndExtend(Data, Axis, Periodicity):'''更改输入数据维度为 (Axis / Periodicity, Periodicity, N),并补充末尾缺失数据'''# 交换设置轴到 0 if Data.ndim > 1:Data = np.swapaxes(Data, 0, Axis)S = Data.shapeS0, S1 = S[0], np.prod(S[1:], dtype = int)Data = Data.reshape((S0, S1))else:Data = np.expand_dims(Data, -1)# 填充不足 Data.shape[0] / PeriodicityB = Data.shape[0] % PeriodicityPW = 0 if B == 0 else Periodicity - BData = np.pad(Data, ((0, PW), (0,0)), mode = "constant", constant_values = np.nan)# 更改为目标维度(3维)PeriodicityTimes = Data.shape[0] // Periodicity return Data.reshape(PeriodicityTimes, Periodicity, Data.shape[1])def _RestoreReshapeAndExtend(Data, Axis, Shape):'''对 _ReshapeAndExtend 修改的维度和数据进行还原'''# 还原为原始维度(2维)Data = Data.reshape(np.prod(Data.shape[:2]), *Data.shape[2:])# 去除尾部填充值Data = Data[:Shape[Axis]]# 还原到初始状态SHP = list(Shape)SHP.pop(Axis)SHP = [Shape[Axis]] + SHPData = Data.reshape(SHP)Data = np.swapaxes(Data, Axis, 0)return Data############### 不同的计算方式
def _Fit(WBInScale, Periodicity, Distribution):'''计算标准化指数'''# 1.计算累积概率Probabilities = eval(f'{Distribution}CP')(WBInScale, 0)if Periodicity == 1:Probabilities = np.expand_dims(Probabilities, 1)# 2.生成结果OutInScale = stats.norm.ppf(Probabilities)return OutInScaledef _API(WBInScale, Axis):'''计算距平指数'''# 1.计算平均值或趋势值Mean = np.nanmean(WBInScale, axis = Axis, dtype = np.float64, keepdims = True)# 4.生成结果OutInScale = (WBInScale - Mean) / Meanreturn OutInScale############### 计算结果
def _Compute(Data, Axis, Scale, Periodicity, Distribution):'''自动计算'''   Periodicity = ValueType(Periodicity, 'pint')# 0.数据准备DP = DataPreparation(Data, Axis) Data = DP.DataSHP = Data.shapeAxis = DP.Axis# 1.计算尺度WBInScale = DP.SumScale(Scale)if not (SHP[Axis] > Periodicity) and (SHP[Axis] > Scale):return np.full(WBInScale.shape, np.nan)# 2.更改输入数据维度为 (Axis / Periodicity, Periodicity, N)WBInScale = _ReshapeAndExtend(WBInScale, Axis, Periodicity)# 3.生成结果if Distribution == 'API':OutInScale = _API(WBInScale, Axis)else:OutInScale = _Fit(WBInScale, Periodicity, Distribution)# 4.还原数据OutInScale = _RestoreReshapeAndExtend(OutInScale, Axis, SHP)    return OutInScale

示例代码2:

#################################### SPEI
def SPEI(PRE, PET, Axis = None, Scale = 1, Periodicity = 12, Distribution = 'LogLogistic'):'''计算SPEI'''Distribution = GetDistribution(Distribution)PRE, PET = INITArray(PRE, PET)WB = np.subtract(PRE, PET, dtype = PRE.dtype)SPEIInScale = _Compute(WB, Axis, Scale, Periodicity, Distribution)return SPEIInScale#################################### SPI
def SPI(PRE, Axis = None, Scale = 1, Periodicity = 12, Distribution = 'Gamma'):'''计算 SPI'''Distribution = GetDistribution(Distribution)SPIInScale = _Compute(PRE, Axis, Scale, Periodicity, Distribution)return SPIInScale#################################### PAP
def PAP(PRE, Axis = None, Scale = 1, Periodicity = 12):'''降水距平百分率'''PAPInScale = _Compute(PRE, Axis, Scale, Periodicity, 'API') return PAPInScale

这篇关于gma 1.x 气候气象指数计算源代码(分享)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/359942

相关文章

Python解析器安装指南分享(Mac/Windows/Linux)

《Python解析器安装指南分享(Mac/Windows/Linux)》:本文主要介绍Python解析器安装指南(Mac/Windows/Linux),具有很好的参考价值,希望对大家有所帮助,如有... 目NMNkN录1js. 安装包下载1.1 python 下载官网2.核心安装方式3. MACOS 系统安

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

linux进程D状态的解决思路分享

《linux进程D状态的解决思路分享》在Linux系统中,进程在内核模式下等待I/O完成时会进入不间断睡眠状态(D状态),这种状态下,进程无法通过普通方式被杀死,本文通过实验模拟了这种状态,并分析了如... 目录1. 问题描述2. 问题分析3. 实验模拟3.1 使用losetup创建一个卷作为pv的磁盘3.

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

10个Python自动化办公的脚本分享

《10个Python自动化办公的脚本分享》在日常办公中,我们常常会被繁琐、重复的任务占据大量时间,本文为大家分享了10个实用的Python自动化办公案例及源码,希望对大家有所帮助... 目录1. 批量处理 Excel 文件2. 自动发送邮件3. 批量重命名文件4. 数据清洗5. 生成 PPT6. 自动化测试

10个Python Excel自动化脚本分享

《10个PythonExcel自动化脚本分享》在数据处理和分析的过程中,Excel文件是我们日常工作中常见的格式,本文将分享10个实用的Excel自动化脚本,希望可以帮助大家更轻松地掌握这些技能... 目录1. Excel单元格批量填充2. 设置行高与列宽3. 根据条件删除行4. 创建新的Excel工作表5

Redis多种内存淘汰策略及配置技巧分享

《Redis多种内存淘汰策略及配置技巧分享》本文介绍了Redis内存满时的淘汰机制,包括内存淘汰机制的概念,Redis提供的8种淘汰策略(如noeviction、volatile-lru等)及其适用场... 目录前言一、什么是 Redis 的内存淘汰机制?二、Redis 内存淘汰策略1. pythonnoe