静息态功能磁共振成像(rs-fMRI)原理与数据分析学习笔记(3):R-fMRI Data Processing DPARSFA

本文主要是介绍静息态功能磁共振成像(rs-fMRI)原理与数据分析学习笔记(3):R-fMRI Data Processing DPARSFA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频来自:3_R-fMRI_Data_Processing_DPARSFA_哔哩哔哩_bilibili

pdf:The R-fMRI Course | The R-fMRI Network

目录

1. DPABI基本流程和下载方式

1.1. 静息态功能磁共振成像数据流程

1.2. DPABI下载

2. DPABI软件操作

2.1. 数据分类和整合

1. DPABI基本流程和下载方式

1.1. 静息态功能磁共振成像数据流程

(1)总流程

(2)计算指标

        ① 传统

        ②通常使用(配准到MNI标准空间下)

        ③原始空间的计算

(3) 数据分类

        ①将Data.zip中的Functional DICOM data放在FunRaw文件中

        ②将Data.zip中的Structural DICOM data放在T1Raw文件中

1.2. DPABI下载

(1)下载路径:DPABI: a toolbox for Data Processing & Analysis for Brain Imaging | The R-fMRI Network (rfmri.org)

(2)解压至matlab\toolbox

(3)打开matlab的(设置路径)

(4)在左侧添加并包含子文件夹(将解压的dpabi文件选中)

(5)在matlab的命令行窗口(不是电脑的cmd)输入dpabi

(6)出现dpabi窗口则成功打开

2. DPABI软件操作

2.1. DPABI按键

(1)DPABI界面点击Utilities→DICOM Sorter

        ①SUffix:后可输入IMA或dcm或none(输入none要确保文件夹下没有其他如txt格式的文件)

        ②Add All:选中大文件夹

        ③Anonymize DICOM files:将被试匿名

(2)DPABI界面点击Utilities→DICOM Sorter→Sort

        ①Participants:右键可以移除被试或保存ID

        ②Time Points:检查数据是否有错,输入为0则不检查,输入其他数字则按时检查数据

        ③TR(s):扫描一个完整大脑所需要的时间(一层一层扫,现在一般几百毫秒一个,长一点可能两秒),一般知道的话可以自己填,填0可以自动从数据集里读TR数据(但不一定对)

        ④EPI DICOM to NIFTI:epi数据类型转成nifti

        ⑤Apply Mats:已经调整过一次可以勾选,调用上一次所用

        ⑥Remove First:去掉前面的时间点,以确保磁场已经达到稳态,且被试刚开始心理可能因不适应产生波动

        ⑦Slice Timing:大脑通常采用隔层扫描的方式,导致相邻层数可能被扫的时间相差甚远,因此需要矫正,使相邻节点看上去像是相邻时间点被扫描的(下图左侧为矫正,右侧为实际)

        ⑧Slice Number:默认为0,但是自己填一个最好

        ⑨Slice Order:可以输表达式[1:2:n-1],[2:2:n]

        ⑩Reference Slice:矫正中点,一般填n-1这个数字(因为是从1~n-1扫,再从2~n扫,所以奇数的末尾实际上是最中间被扫到的点)

        ⑪Realign:头动矫正。因头动产生数据读取差异,因此需要调整到看上去是没动的状态。暂目前推荐使用FJ_Jenkinson效果较好

        ⑫Reorient Fun/T1:对图像的观察,质量控制,将位置调整的和标准位置相似,以确保拟合 

        ⑬AutoMask:选上可以检验功能上得到覆盖

        ⑭Crop T1:如果图像已经不是NIFTI可以选上,把脖子去掉

        ⑮Bet:把结构项变成功能项时头皮干扰较大,Bet去掉结构上和功能上的头皮。但是带着头皮去做Segment效果较好。且Bet时粗略剥头皮,可能对图像造成损失

        ⑯Segment:一般不勾。把大脑分为白质灰质(c1文件为原始空间下的灰质密度,c2文件为原始空间下的白质密度,c3为原始空间CSF脑脊液密度;wc1为MNI空间灰质密度,wc2为MNI空间白质密度,wc3为MNI空间CSF密度;mwc1、2、3分别为为灰质、白质、CSF体积的变化)

        ⑰New Segment + DARTEL:一般勾。

        ⑱Nuisance Convariates Regression:控制生理噪声(一般Plolynomial trend填1,并采用Friston24)

        ⑲Head momtion scrubbing regressors:可以再nuisance的时候做scrubbing也可以在做完所有预处理再做,但是推荐FD(Jenkinson)以及FD“bad”填写0.2

        ⑳Nuisance Setting用均值最多,或PCA(Mask based on segmentation or SPM apriorir)。且白质里一般没有什么信号,一般都是噪声。Global Signal一般不去除,否则可能带来假的或者负的功能连接,但是它对去除头动很有用。可以都做一遍

        ㉑Normalize:空间配置,不同地方扫出来的脑图可能不太一样,得配到统一的模板上(DARTEL用得最多,但费时)

        ㉒Smooth:配准效果不佳时提高配准,提高信噪比([4,4,4],[6,6,6],[8,8,8]都可以,一般默认前者,但是平滑和越高一般可以增强重复使用性)。且ReHO不用做平滑

        ㉓Default Mask:所有的计算仅局限在脑内,且所有功能模板在50%的阈值(可以选其他的Mask)

        ㉔Detrend:随时间序列有线性向上或向下的趋势,由此用这个去掉。但这个软件在之前已经去掉了所有在这可以不勾画

        ㉕ALFF和fALFF:低频段能量和全频段能量,后面可勾filter

        ㉖ReHo之后做平滑,之前不做

        ㉗Degree Centrality:衡量一个体素对于全脑体素的关联/相关性

        ㉘Extract ROI time courses:提取额外ROI时间点,对于做网络分析功能重要

        ㉙VMHC:做镜像

        ㉚缩写大全(方便看文件名)

这篇关于静息态功能磁共振成像(rs-fMRI)原理与数据分析学习笔记(3):R-fMRI Data Processing DPARSFA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/358763

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss