PSP - 蛋白质结构预测 AlphaFold2 的结构模版 (Template) 搜索与特征逻辑

本文主要是介绍PSP - 蛋白质结构预测 AlphaFold2 的结构模版 (Template) 搜索与特征逻辑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132427617

Template
结构模版 (Template) 是一种已知的蛋白质结构,可以作为 AlphaFold2 蛋白质结构预测的参考,AlphaFold2 可以从多个数据库中搜索和选择最合适的模板,也可以使用自定义的模板。AlphaFold2 使用了一种基于深度学习的方法,利用模板和序列对齐信息来预测蛋白质的三维结构,还可以预测多聚体蛋白质的结构,这是一种由多个亚基组成的复杂蛋白质。

Monomer 模版搜索的结果文件是 pdb_hits.hhr,而 Multimer 是以 sto 格式结尾,搜索算法不同导致的。

测试 Case 是 T1104-D1_A117,来源于 CASP15。模版搜索结果的处理逻辑,位于 alphafold/data/pipeline.py 中:

  • templates_result 就是模版特征,是 AF2 的三大特征 (Sequence | MSA | Template)之一。

即:

# ...
# 加载模版文件
if os.path.isfile(pdb_hits_out_path):  # avoid to search templateswith open(pdb_hits_out_path, "r") as f:pdb_templates_result = f.read()logging.info("[CL] use saved template. %s", pdb_hits_out_path)
# ...
# 获取pdb命中结果
pdb_template_hits = self.template_searcher.get_template_hits(output_string=pdb_templates_result, input_sequence=input_sequence)
# ...
# 解析模版结果
templates_result = self.template_featurizer.get_templates(query_sequence=input_sequence,hits=pdb_template_hits)
# ...

日志:

[CL] use saved template. mydata/T1104-D1_A117/msas/pdb_hits.hhr

1. get_template_hits() — 解析 hhr 文件

获取模版在 PDB 库的命中结果,主要是解析 pdb_hits.hhr 文件。逻辑位于 alphafold/data/tools/hhsearch.py,即:

def get_template_hits(self,output_string: str,input_sequence: str) -> Sequence[parsers.TemplateHit]:"""Gets parsed template hits from the raw string output by the tool."""del input_sequence  # Used by hmmseach but not needed for hhsearch.return parsers.parse_hhr(output_string)

调用解析 hhr 的函数 parse_hhr(),逻辑位于alphafold/data/parsers.py,即

def parse_hhr(hhr_string: str) -> Sequence[TemplateHit]:"""Parses the content of an entire HHR file."""lines = hhr_string.splitlines()# Each .hhr file starts with a results table, then has a sequence of hit# "paragraphs", each paragraph starting with a line 'No <hit number>'. We# iterate through each paragraph to parse each hit.block_starts = [i for i, line in enumerate(lines) if line.startswith('No ')]hits = []if block_starts:block_starts.append(len(lines))  # Add the end of the final block.for i in range(len(block_starts) - 1):hits.append(_parse_hhr_hit(lines[block_starts[i]:block_starts[i + 1]]))return hits

插入日志逻辑,即:

from absl import logging
logging.set_verbosity(logging.INFO)
for hit in hits:logging.info(f"[CL] hit: {hit}")

日志如下:

[CL] hit: TemplateHit(index=5, name='2KW0_A CcmH protein; oxidoreductase, cytochrome c maturation; NMR {Escherichia coli}', aligned_cols=38, sum_probs=30.8, query='AVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEE', hit_sequence='DLRQKVYELMQEGKSKKEIVDYMVARYGNFVTYDPPLT', indices_query=[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45], indices_hit=[43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80])

其中,pdb_hits.hhr 如下:

Query         A 
Match_columns 117
No_of_seqs    22 out of 29
Neff          2.94667
Searched_HMMs 80799
Date          Tue May  9 10:08:54 2023
Command       /root/miniconda3/envs/alphafold/bin/hhsearch -i /tmp/tmp7qe78wbc/query.a3m -o /tmp/tmp7qe78wbc/output.hhr -maxseq 1000000 -d /nfs_baoding/chenlong/af2_data_dir/pdb70/pdb70 No Hit                             Prob E-value P-value  Score    SS Cols Query HMM  Template HMM1 2HL7_A Cytochrome C-type bioge  31.3      41 0.00051   24.1   0.0   34    9-42     47-80  (84)2 3D3M_A Eukaryotic translation   26.6      56 0.00069   24.7   0.0   33    9-41      3-35  (168)3 3JVN_A Acetyltransferase (E.C.  25.8      59 0.00073   21.0   0.0   31   70-100    94-124 (166)4 3OAO_A uncharacterized protein  24.7      64 0.00079   23.7   0.0   43   11-53     56-98  (147)5 2KW0_A CcmH protein; oxidoredu  23.4      70 0.00087   23.3   0.0   38    9-46     44-81  (90)6 3F0A_A N-ACETYLTRANSFERASE; N-  22.9      73 0.00091   20.4   0.0   39    2-40     11-53  (162)7 5LXU_A Transcription factor LU  22.4      76 0.00094   20.3   0.0   26   11-36     29-54  (57)8 2DXQ_A Acetyltransferase; acet  22.0      78 0.00097   19.6   0.0   25   75-99     92-116 (150)9 2DXQ_B Acetyltransferase; acet  22.0      78 0.00097   19.6   0.0   25   75-99     92-116 (150)10 5UN0_3 Proteasome Activator; A  19.9      92  0.0011   25.3   0.0   24   78-101    88-111 (251)No 1
>2HL7_A Cytochrome C-type biogenesis protein CcmH; Three-helices bundle, OXIDOREDUCTASE; HET: PG4; 1.7A {Pseudomonas aeruginosa}
Probab=31.28  E-value=41  Score=24.06  Aligned_cols=34  Identities=9%  Similarity=0.188  Sum_probs=27.6  Template_Neff=6.200Q A                 9 AVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISS   42 (117)
Q Consensus         9 ~VA~~LEkMF~nGVse~Nf~~Yv~~Nfs~~EIs~   42 (117)..-.++.+|...|-|++-+.+|+.+.|++.=+..
T Consensus        47 ~~R~~I~~~l~~G~s~~eI~~~~v~~YG~~IL~~   80 (84)
T 2HL7_A           47 DLRKQIYGQLQQGKSDGEIVDYMVARYGDFVRYK   80 (84)
T ss_dssp             HHHHHHHHHHHHTCCHHHHHHHHHHHHTTTCEEC
T ss_pred             HHHHHHHHHHHCCCCHHHHHHHHHHHHCccceeC
Confidence            3445678899999999999999999998765443No 2
>3D3M_A Eukaryotic translation initiation factor 4; HEAT repeat domain, Structural Genomics; 1.9A {Homo sapiens}
Probab=26.65  E-value=56  Score=24.68  Aligned_cols=33  Identities=12%  Similarity=0.157  Sum_probs=27.2  Template_Neff=8.500Q A                 9 AVAKGLEEMYANGVTEDNFKNYVKNNFAQQEIS   41 (117)
Q Consensus         9 ~VA~~LEkMF~nGVse~Nf~~Yv~~Nfs~~EIs   41 (117).|-.+|++++..|-+.+.+.+|+.+|.+++...
T Consensus         3 ~~~~~L~~~l~~~~~~~~i~~wi~~~v~~~~~~   35 (168)
T 3D3M_A            3 KLEKELLKQIKLDPSPQTIYKWIKDNISPKLHV   35 (168)
T ss_pred             HHHHHHHHHHhhCCCHHHHHHHHHHhCCHHHcC
Confidence            355689999999999999999999998876543# ...

2. get_templates() — 提取模版特征

核心逻辑位于 alphafold/data/templates.py 中,get_templates() 循环处理 hit,调用 _process_single_hit(),即:

def get_templates(self,query_sequence: str,hits: Sequence[parsers.TemplateHit]) -> TemplateSearchResult:"""Computes the templates for given query sequence (more details above)."""# ...for hit in sorted(hits, key=lambda x: x.sum_probs, reverse=True):# We got all the templates we wanted, stop processing hits.if num_hits >= self._max_hits:breakresult = _process_single_hit(query_sequence=query_sequence,hit=hit,mmcif_dir=self._mmcif_dir,max_template_date=self._max_template_date,release_dates=self._release_dates,obsolete_pdbs=self._obsolete_pdbs,strict_error_check=self._strict_error_check,kalign_binary_path=self._kalign_binary_path)
#...

核心逻辑位于 _process_single_hit() 中,生成单个模版特征,具体在 _extract_template_features() 函数中,生成特征,即:

# ...
mapping = _build_query_to_hit_index_mapping(hit.query, hit.hit_sequence, hit.indices_hit, hit.indices_query,query_sequence)
# ...
template_sequence = hit.hit_sequence.replace('-', '')
# ...
cif_path = os.path.join(mmcif_dir, hit_pdb_code + '.cif')
# ...
parsing_result = mmcif_parsing.parse(file_id=hit_pdb_code, mmcif_string=cif_string)
# ...
# 核心逻辑
features, realign_warning = _extract_template_features(mmcif_object=parsing_result.mmcif_object,pdb_id=hit_pdb_code,mapping=mapping,template_sequence=template_sequence,query_sequence=query_sequence,template_chain_id=hit_chain_id,kalign_binary_path=kalign_binary_path)
# ...

插入日志逻辑,即:

from absl import logging
logging.set_verbosity(logging.INFO)
logging.info(f"[CL] hit_pdb_code: {hit_pdb_code}, hit_chain_id: {hit_chain_id}, cif_path: {cif_path}, query_sequence: {query_sequence}")

日志如下:

[CL] hit_pdb_code: 2kw0, hit_chain_id: A, cif_path: af2_data_dir/pdb_mmcif/mmcif_files/2kw0.cif, query_sequence: QLEDSEVEAVAKGLEEMYANGVTEDNFKNYVKNNFAQQEISSVEEELNVNISDSCVANKIKDEFFAMISISAIVKAAQKKAWKELAVTVLRFAKANGLKTNAIIVAGQLALWAVQCG

这篇关于PSP - 蛋白质结构预测 AlphaFold2 的结构模版 (Template) 搜索与特征逻辑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/357370

相关文章

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

如何使用Maven创建web目录结构

《如何使用Maven创建web目录结构》:本文主要介绍如何使用Maven创建web目录结构的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录创建web工程第一步第二步第三步第四步第五步第六步第七步总结创建web工程第一步js通过Maven骨架创pytho

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

利用Python开发Markdown表格结构转换为Excel工具

《利用Python开发Markdown表格结构转换为Excel工具》在数据管理和文档编写过程中,我们经常使用Markdown来记录表格数据,但它没有Excel使用方便,所以本文将使用Python编写一... 目录1.完整代码2. 项目概述3. 代码解析3.1 依赖库3.2 GUI 设计3.3 解析 Mark

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短