程序员过关斩将--快速迁移10亿级数据

2023-11-06 13:32

本文主要是介绍程序员过关斩将--快速迁移10亿级数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

640?wx_fmt=gif

菜菜呀,咱们业务BJKJ有个表数据需要做迁移

640?wx_fmt=png 程序员主力 Y总 640?wx_fmt=gif

现在有多少数据?

640?wx_fmt=png 菜菜640?wx_fmt=jpeg

大约21亿吧,2017年以前的数据没有业务意义了,给你半天时间把这个事搞定,绩效给你A

640?wx_fmt=png 程序员主力 Y总 640?wx_fmt=gif

有绩效奖金吗?

640?wx_fmt=png 菜菜640?wx_fmt=jpeg

钱的事你去问X总,我当家不管钱

640?wx_fmt=png 程序员主力 Y总 640?wx_fmt=gif

...........

640?wx_fmt=png 菜菜640?wx_fmt=jpeg问题分析

经过几分钟的排查,数据库情况如下:

640?wx_fmt=png1.  数据库采用Sqlserver 2008 R2,单表数据量21亿

640?wx_fmt=png


640?wx_fmt=png2. 无水平或者垂直切分,但是采用了分区表。分区表策略是按时间降序分的区,将近30个分区。正因为分区表的原因,系统才保证了在性能不是太差的情况下坚持至今。

640?wx_fmt=png3. 此表除聚集索引之外,无其他索引,无主键(主键其实是利用索引来快速查重的)。所以在频繁插入新数据的情况下,索引调整所耗费的性能比较低。

640?wx_fmt=png

640?wx_fmt=png 640?wx_fmt=png至于聚集索引和非聚集索引等知识,请各位移步google或者百度。 640?wx_fmt=png

        至于业务,不是太复杂。经过相关人员咨询,大约40%的请求为单条Insert,大约60%的请求为按class_id 和in_time(倒序)分页获取数据。Select请求全部命中聚集索引,所以性能非常高。这也是聚集索引之所以这样设计的目的。 

解决问题

        由于单表数据量已经超过21亿,并且2017年以前的数据几乎不影响业务,所以决定把2017年以前(不包括2017年)的数据迁移到新表,仅供以后特殊业务查询使用。经过查询大约有9亿数据量。

数据迁移工作包括三个个步骤:

1.  从源数据表查询出要迁移的数据

2.  把数据插入新表

3.  把旧表的数据删除

传统做法

        这里申明一点,就算是传统的做法也需要分页获取源数据,因为你的内存一次性装载不下9亿条数据。

640?wx_fmt=png1.  从源数据表分页获取数据,具体分页条数,太少则查询原表太频繁,太多则查询太慢。

SQL语句类似于

SELECT * FROM (
SELECT *,ROW_NUMBER() OVER(ORDER BY class_id,in_time) p FROM  tablexx WHERE in_time <'2017.1.1'  
) t WHERE t.p BETWEEN 1 AND 100


640?wx_fmt=png2.  把查询出来的数据插入目标数据表,这里强调一点,一定不要用单条插入策略,必须用批量插入。

640?wx_fmt=png3.  把数据删除,其实这里删除还是有一个小难点,表没有标示列。这里不展开,因为这不是菜菜要说的重点。

        如果你的数据量不大,以上方法完全没有问题,但是在9亿这个数字前面,以上方法显得心有余而力不足。一个字:慢,太慢,非常慢。

可以大体算一下,假如每秒可以迁移1000条数据,大约需要的时间为(单位:分)

900000000/1000/60=15000(分钟)

大约需要10天^ V ^

改进做法

以上的传统做法弊端在哪里呢?

1.  在9亿数据前查询必须命中索引,就算是非聚集索引菜菜也不推荐,首推聚集索引。

2.  如果你了解索引的原理,你应该明白,不停的插入新数据的时候,索引在不停的更新,调整,以保持树的平衡等特性。尤其是聚集索引影响甚大,因为还需要移动实际的数据。


提取以上两点共同的要素,那就是聚集索引。相应的解决方案也就应运而生:

1.  按照聚集索分页引查询数据

2 批量插入数据迎合聚集索引,即:按照聚集索引的顺序批量插入。

3. 按照聚集索引顺序批量删除

由于做了表分区,如果有一种方式把2017年以前的分区直接在磁盘物理层面从当前表剥离,然后挂载到另外一个表,可算是神级操作。有谁能指导一下菜菜,感激不尽

扩展阅读

640?wx_fmt=png1.  一个表的聚集索引的顺序就是实际数据文件的顺序,映射到磁盘上,本质上位于同一个磁道上,所以操作的时候磁盘的磁头不必跳跃着去操作。

640?wx_fmt=png2.  存储在硬盘中的每个文件都可分为两部分:文件头和存储数据的数据区。文件头用来记录文件名、文件属性、占用簇号等信息,文件头保存在一个簇并映射在FAT表(文件分配表)中。而真实的数据则是保存在数据区当中的。平常所做的删除,其实是修改文件头的前2个代码,这种修改映射在FAT表中,就为文件作了删除标记,并将文件所占簇号在FAT表中的登记项清零,表示释放空间,这也就是平常删除文件后,硬盘空间增大的原因。而真正的文件内容仍保存在数据区中,并未得以删除。要等到以后的数据写入,把此数据区覆盖掉,这样才算是彻底把原来的数据删除。如果不被后来保存的数据覆盖,它就不会从磁盘上抹掉。

NetCore 代码(实际运行代码)

1.  第一步:由于聚集索引需要class_id ,所以宁可花2-4秒时间把要操作的class_id查询出来(ORM为dapper),并且升序排列

   DateTime dtMax = DateTime.Parse("2017.1.1");
   var allClassId = DBProxy.GeSourcetLstClassId(dtMax)?.OrderBy(s=>s);

2.  按照第一步class_id 列表顺序查询数据,每个class_id 分页获取,然后插入目标表,全部完成然后删除源表相应class_id的数据。(全部命中聚集索引)

   D int pageIndex = 1//页码
            int pageCount = 20000;//每页的数据条数
            DataTable tempData =null;
            int successCount = 0;
            foreach (var classId in allClassId)
            {
                tempData = null;
                pageIndex = 1;
                while (true)
                {
                    int startIndex = (pageIndex - 1) * pageCount+1;
                    int endIndex = pageIndex * pageCount;

                    tempData = DBProxy.GetSourceDataByClassIdTable(dtMax, classId, startIndex, endIndex);
                    if (tempData == null || tempData.Rows.Count==0)
                    {
                        //最后一页无数据了,删除源数据源数据然后跳出
                         DBProxy.DeleteSourceClassData(dtMax, classId);
                        break;
                    }
                    else
                    {
                        DBProxy.AddTargetData(tempData);
                    }
                    pageIndex++;
                }
                successCount++;
                Console.WriteLine($"班级:{classId} 完成,已经完成:{successCount}个");
            }


DBProxy 完整代码:

class DBProxy
    {
        //获取要迁移的数据所有班级id
        public static IEnumerable<intGeSourcetLstClassId(DateTime dtMax)
        
{
            var connection = Config.GetConnection(Config.SourceDBStr);
            string Sql = @"SELECT class_id FROM  tablexx WHERE in_time <@dtMax GROUP BY class_id ";
            using (connection)
            {
                return connection.Query<int>(Sql, new { dtMax = dtMax }, commandType: System.Data.CommandType.Text);

            }
        }

        public static DataTable GetSourceDataByClassIdTable(DateTime dtMax, int classId, int startIndex, int endIndex)
        
{
            var connection = Config.GetConnection(Config.SourceDBStr);
            string Sql = @" SELECT * FROM (
                        SELECT *,ROW_NUMBER() OVER(ORDER BY in_time desc) p FROM  tablexx WHERE in_time <@dtMax  AND class_id=@classId
                        ) t WHERE t.p BETWEEN @startIndex AND @endIndex "
;
            using (connection)
            {
                DataTable table = new DataTable("MyTable");
                var reader = connection.ExecuteReader(Sql, new { dtMax = dtMax, classId = classId, startIndex = startIndex, endIndex = endIndex }, commandType: System.Data.CommandType.Text);
                table.Load(reader);
                reader.Dispose();
                return table;
            }
        }
         public static int DeleteSourceClassData(DateTime dtMax, int classId)
        
{
            var connection = Config.GetConnection(Config.SourceDBStr);
            string Sql = @" delete from  tablexx WHERE in_time <@dtMax  AND class_id=@classId ";
            using (connection)
            {
                return connection.Execute(Sql, new { dtMax = dtMax, classId = classId }, commandType: System.Data.CommandType.Text);

            }
        }
        //SqlBulkCopy 批量添加数据
        public static int AddTargetData(DataTable data)
        
{
            var connection = Config.GetConnection(Config.TargetDBStr);
            using (var sbc = new SqlBulkCopy(connection))
            {
                sbc.DestinationTableName = "tablexx_2017";               
                sbc.ColumnMappings.Add("class_id""class_id");
                sbc.ColumnMappings.Add("in_time""in_time");
                .
                .
                .
                using (connection)
                {
                    connection.Open();
                    sbc.WriteToServer(data);
                }               
            }
            return 1;
        }

    }

运行报告:

        程序本机运行,开vpn连接远程DB服务器,运行1分钟,迁移的数据数据量为 1915560,每秒约3万条数据

 1915560 / 60=31926 条/秒

 cpu情况(不高):

640?wx_fmt=png


磁盘队列情况(不高):

640?wx_fmt=png

写在最后

在以下情况下速度还将提高

 1. 源数据库和目标数据库硬盘为ssd,并且分别为不同的服务器

 2. 迁移程序和数据库在同一个局域网,保障数据传输时候带宽不会成为瓶颈

 3. 合理的设置SqlBulkCopy参数

 4. 菜菜的场景大多数场景下每次批量插入的数据量达不到设置的值,因为有的class_id 对应的数据量就几十条,甚至几条而已,打开关闭数据库连接也是需要耗时的

 5. 单纯的批量添加或者批量删除操作


640?wx_fmt=png
640?wx_fmt=gif

程序员修仙之路--把用户访问记录优化到极致

程序员修仙之路--把用户访问记录优化到极致

● 程序员修仙之路--设计一个实用的线程池 ●程序员修仙之路--数据结构之CXO让我做一个计算器 ●程序猿修仙之路--数据结构之设计高性能访客记录系统 ●程序猿修仙之路--算法之快速排序到底有多快 程序猿修仙之路--数据结构之你是否真的懂数组?

互联网之路,菜菜与君一同成长

长按识别二维码关注

640?wx_fmt=jpeg 640?wx_fmt=gif


这篇关于程序员过关斩将--快速迁移10亿级数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/356939

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T