Opencv C++图像处理:亮度+对比度+饱和度+高光+暖色调+阴影+漫画效果+白平衡+浮雕+羽化+锐化+颗粒感

本文主要是介绍Opencv C++图像处理:亮度+对比度+饱和度+高光+暖色调+阴影+漫画效果+白平衡+浮雕+羽化+锐化+颗粒感,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、多功能色彩调整
    • 1.1、亮度
    • 1.2、对比度
    • 1.3、饱和度
    • 1.4、高光
    • 1.5、暖色调
    • 1.6、阴影
    • 1.7、漫画效果
    • 1.8、白平衡-灰度世界
    • 1.9、白平衡-完美反射
    • 1.10、浮雕
    • 1.11、羽化
    • 1.12、锐化
    • 1.13、颗粒感
  • 二、实战案例
    • 2.1、主函数
    • 2.2、函数定义

更多详细信息请看:OpenCV专栏:翟天保Steven

一、多功能色彩调整

1.1、亮度

在这里插入图片描述

//--------------------------------------------------------------------------------
// 亮度与对比度
cv::Mat Brightness(cv::Mat src, float brightness, int contrast)
{cv::Mat dst;dst = cv::Mat::zeros(src.size(), src.type());		//新建空白模板:大小/类型与原图像一致,像素值全0。int height = src.rows;								//获取图像高度int width = src.cols;								//获取图像宽度float alpha = brightness;							//亮度(0~1为暗,1~正无穷为亮)float beta = contrast;								//对比度cv::Mat template1;src.convertTo(template1, CV_32F);					//将CV_8UC1转换为CV32F1数据格式。for (int row = 0; row < height; row++){for (int col = 0; col < width; col++){if (src.channels() == 3){float b = template1.at<cv::Vec3f>(row, col)[0];		//获取通道的像素值(blue)float g = template1.at<cv::Vec3f>(row, col)[1];		//获取通道的像素值(green)float r = template1.at<cv::Vec3f>(row, col)[2];		//获取通道的像素值(red)//cv::saturate_cast<uchar>(vaule):需注意,value值范围必须在0~255之间。dst.at<cv::Vec3b>(row, col)[0] = cv::saturate_cast<uchar>(b * alpha + beta);		//修改通道的像素值(blue)dst.at<cv::Vec3b>(row, col)[1] = cv::saturate_cast<uchar>(g * alpha + beta);		//修改通道的像素值(green)dst.at<cv::Vec3b>(row, col)[2] = cv::saturate_cast<uchar>(r * alpha + beta);		//修改通道的像素值(red)}else if (src.channels() == 1){float v = src.at<uchar>(row, col);											//获取通道的像素值(单)dst.at<uchar>(row, col) = cv::saturate_cast<uchar>(v * alpha + beta);		//修改通道的像素值(单)//saturate_cast<uchar>:主要是为了防止颜色溢出操作。如果color<0,则color等于0;如果color>255,则color等于255。}}}return dst;
}

1.2、对比度

在这里插入图片描述

//--------------------------------------------------------------------------------
// 亮度与对比度
cv::Mat Brightness(cv::Mat src, float brightness, int contrast)
{cv::Mat dst;dst = cv::Mat::zeros(src.size(), src.type());		//新建空白模板:大小/类型与原图像一致,像素值全0。int height = src.rows;								//获取图像高度int width = src.cols;								//获取图像宽度float alpha = brightness;							//亮度(0~1为暗,1~正无穷为亮)float beta = contrast;								//对比度cv::Mat template1;src.convertTo(template1, CV_32F);					//将CV_8UC1转换为CV32F1数据格式。for (int row = 0; row < height; row++){for (int col = 0; col < width; col++){if (src.channels() == 3){float b = template1.at<cv::Vec3f>(row, col)[0];		//获取通道的像素值(blue)float g = template1.at<cv::Vec3f>(row, col)[1];		//获取通道的像素值(green)float r = template1.at<cv::Vec3f>(row, col)[2];		//获取通道的像素值(red)//cv::saturate_cast<uchar>(vaule):需注意,value值范围必须在0~255之间。dst.at<cv::Vec3b>(row, col)[0] = cv::saturate_cast<uchar>(b * alpha + beta);		//修改通道的像素值(blue)dst.at<cv::Vec3b>(row, col)[1] = cv::saturate_cast<uchar>(g * alpha + beta);		//修改通道的像素值(green)dst.at<cv::Vec3b>(row, col)[2] = cv::saturate_cast<uchar>(r * alpha + beta);		//修改通道的像素值(red)}else if (src.channels() == 1){float v = src.at<uchar>(row, col);											//获取通道的像素值(单)dst.at<uchar>(row, col) = cv::saturate_cast<uchar>(v * alpha + beta);		//修改通道的像素值(单)//saturate_cast<uchar>:主要是为了防止颜色溢出操作。如果color<0,则color等于0;如果color>255,则color等于255。}}}return dst;
}

1.3、饱和度

在这里插入图片描述

//--------------------------------------------------------------------------------
// 饱和度
cv::Mat Saturation(cv::Mat src, int saturation)
{float Increment = saturation * 1.0f / 100;cv::Mat temp = src.clone();int row = src.rows;int col = src.cols;for (int i = 0; i < row; ++i){uchar *t = temp.ptr<uchar>(i);uchar *s = src.ptr<uchar>(i);for (int j = 0; j < col; ++j){uchar b = s[3 * j];uchar g = s[3 * j + 1];uchar r = s[3 * j + 2];float max = max3(r, g, b);float min = min3(r, g, b);float delta, value;float L, S, alpha;delta = (max - min) / 255;if (delta == 0)continue;value = (max + min) / 255;L = value / 2;if (L < 0.5)S = delta / value;elseS = delta / (2 - value);if (Increment >= 0){if ((Increment + S) >= 1)alpha = S;elsealpha = 1 - Increment;alpha = 1 / alpha - 1;t[3 * j + 2] =static_cast<uchar>( r + (r - L * 255) * alpha);t[3 * j + 1] = static_cast<uchar>(g + (g - L * 255) * alpha);t[3 * j] = static_cast<uchar>(b + (b - L * 255) * alpha);}else{alpha = Increment;t[3 * j + 2] = static_cast<uchar>(L * 255 + (r - L * 255) * (1 + alpha));t[3 * j + 1] = static_cast<uchar>(L * 255 + (g - L * 255) * (1 + alpha));t[3 * j] = static_cast<uchar>(L * 255 + (b - L * 255) * (1 + alpha));}}}return temp;
}

1.4、高光

在这里插入图片描述

//--------------------------------------------------------------------------------
// 高光
cv::Mat HighLight(cv::Mat src, int highlight)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定高光区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());thresh = gray.mul(gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = highlight / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j] + 1.0f;br[j] = (1.0f / t[0] * th[j])*bright;}}}// 高光提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}

1.5、暖色调

在这里插入图片描述

//--------------------------------------------------------------------------------
// 暖色调
cv::Mat ColorTemperature(cv::Mat src, int warm)
{cv::Mat result = src.clone();int row = src.rows;int col = src.cols;int level = warm/2;for (int i = 0; i < row; ++i){uchar* a = src.ptr<uchar>(i);uchar* r = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){int R,G,B;// R通道R = a[j * 3 + 2];R = R + level;if (R > 255) {r[j * 3 + 2] = 255;}else if (R < 0) {r[j * 3 + 2] = 0;}else {r[j * 3 + 2] = R;}// G通道G = a[j * 3 + 1];G = G + level;if (G > 255) {r[j * 3 + 1] = 255;}else if (G < 0) {r[j * 3 + 1] = 0;}else {r[j * 3 + 1] = G;}// B通道B = a[j * 3];B = B - level;if (B > 255) {r[j * 3] = 255;}else if (B < 0) {r[j * 3] = 0;}else {r[j * 3] = B;}}}return result;
}

1.6、阴影

在这里插入图片描述

//--------------------------------------------------------------------------------
// 阴影
cv::Mat Shadow(cv::Mat src, int shadow)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定阴影区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());	thresh = (1.0f - gray).mul(1.0f - gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = shadow / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j]+ 1.0f;   br[j] = (1.0f / t[0] * th[j])*bright;               }}}// 阴影提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}

1.7、漫画效果

在这里插入图片描述

//--------------------------------------------------------------------------------
// 漫画效果
cv::Mat Cartoon(cv::Mat src, double clevel, int d, double sigma, int size)
{// 中值滤波cv::Mat m;cv::medianBlur(src, m, 7);// 提取轮廓cv::Mat c;clevel = cv::max(40., cv::min(80., clevel));cv::Canny(m, c, clevel, clevel *3);// 轮廓膨胀加深cv::Mat k = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));cv::dilate(c, c, k);// 反转c = c / 255;c = 1 - c;// 类型转化cv::Mat cf;c.convertTo(cf, CV_32FC1);// 均值滤波cv::blur(cf, cf, cv::Size(5, 5));// 双边滤波cv::Mat srcb;d = cv::max(0, cv::min(10, d));sigma = cv::max(10., cv::min(250., sigma));cv::bilateralFilter(src, srcb, d, sigma, sigma);size = cv::max(10, cv::min(25, size));cv::Mat temp = srcb / size;temp = temp * size;// 通道合并cv::Mat c3;cv::Mat cannyChannels[] = { cf, cf, cf };cv::merge(cannyChannels, 3, c3);// 类型转化cv::Mat tempf;temp.convertTo(tempf, CV_32FC3);// 图像相乘cv::multiply(tempf, c3, tempf);// 类型转化tempf.convertTo(temp, CV_8UC3);return temp;
}

1.8、白平衡-灰度世界

在这里插入图片描述

//--------------------------------------------------------------------------------
// 白平衡-灰度世界
cv::Mat WhiteBalcane_Gray(cv::Mat src)
{cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}// 通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);// 计算通道灰度值均值double Bm = cv::mean(Channel[0])[0];double Gm = cv::mean(Channel[1])[0];double Rm = cv::mean(Channel[2])[0];double Km = (Bm + Gm + Rm) / 3;// 通道灰度值调整Channel[0] *= Km / Bm;Channel[1] *= Km / Gm;Channel[2] *= Km / Rm;// 合并通道cv::merge(Channel, result);return result;
}

1.9、白平衡-完美反射

在这里插入图片描述

//--------------------------------------------------------------------------------
// 白平衡-完美反射
cv::Mat WhiteBalcane_PRA(cv::Mat src)
{cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}// 通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);// 定义参数int row = src.rows;int col = src.cols;int RGBSum[766] = { 0 };uchar maxR, maxG, maxB;// 计算单通道最大值for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];RGBSum[sum]++;maxB = cv::max(maxB, b[j]);maxG = cv::max(maxG, g[j]);maxR = cv::max(maxR, r[j]);}}// 计算最亮区间下限Tint T = 0;int num = 0;int K = static_cast<int>(row * col * 0.1);for (int i = 765; i >= 0; --i){num += RGBSum[i];if (num > K){T = i;break;}}// 计算单通道亮区平均值double Bm = 0.0, Gm = 0.0, Rm = 0.0;int count = 0;for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];if (sum > T){Bm += b[j];Gm += g[j];Rm += r[j];count++;}}}Bm /= count;Gm /= count;Rm /= count;// 通道调整Channel[0] *= maxB / Bm;Channel[1] *= maxG / Gm;Channel[2] *= maxR / Rm;// 合并通道cv::merge(Channel, result);return result;
}

1.10、浮雕

在这里插入图片描述

//--------------------------------------------------------------------------------
// 浮雕
cv::Mat Relief(cv::Mat src)
{CV_Assert(src.channels() == 3);int row = src.rows;int col = src.cols;cv::Mat temp = src.clone();for (int i = 1; i < row-1; ++i){uchar *s1 = src.ptr<uchar>(i - 1);uchar *s2 = src.ptr<uchar>(i + 1);uchar *t = temp.ptr<uchar>(i);for (int j = 1; j < col-1; ++j){for (int k = 0; k < 3; ++k){int RGB = s1[3 * (j - 1) + k] - s2[3 * (j + 1) + k] + 128;if (RGB < 0)RGB = 0;if (RGB > 255)RGB = 255;t[3*j+k] =(uchar)RGB;}}}return temp;
}

1.11、羽化

在这里插入图片描述

//--------------------------------------------------------------------------------
// 羽化
cv::Mat Eclosion(cv::Mat src, cv::Point center, float level)
{if (level > 0.9)level = 0.9f;float diff = (1-level) * (src.rows / 2 * src.rows / 2 + src.cols / 2 * src.cols / 2);cv::Mat result = src.clone();for (int i = 0; i < result.rows; ++i){for (int j = 0; j < result.cols; ++j){float dx = float(center.x - j);float dy = float(center.y - i);float ra = dx * dx + dy * dy;float m = ((ra-diff) / diff * 255)>0? ((ra - diff) / diff * 255):0;int b = result.at<cv::Vec3b>(i, j)[0];int g = result.at<cv::Vec3b>(i, j)[1];int r = result.at<cv::Vec3b>(i, j)[2];b = (int)(b+ m);g = (int)(g + m);r = (int)(r + m);result.at<cv::Vec3b>(i, j)[0] = (b > 255 ? 255 : (b < 0 ? 0 : b));result.at<cv::Vec3b>(i, j)[1] = (g > 255 ? 255 : (g < 0 ? 0 : g));result.at<cv::Vec3b>(i, j)[2] = (r > 255 ? 255 : (r < 0 ? 0 : r));}}return result;
}

1.12、锐化

在这里插入图片描述

//--------------------------------------------------------------------------------
// 锐化
cv::Mat Sharpen(cv::Mat input, int percent, int type)
{cv::Mat result;cv::Mat s = input.clone();cv::Mat kernel;switch (type){case 0:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);case 1:kernel = (cv::Mat_<int>(3, 3) <<-1, -1, -1,-1, 8, -1,-1, -1, -1);default:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);}cv::filter2D(s, s, s.depth(), kernel);result = input + s * 0.01 * percent;return result;
}

1.13、颗粒感

在这里插入图片描述

//--------------------------------------------------------------------------------
// 颗粒感
cv::Mat Grainy(cv::Mat src, int level)
{int row = src.rows;int col = src.cols;if (level > 100)level = 100;if (level < 0)level = 0;cv::Mat result = src.clone();for (int i = 0; i < row; ++i){uchar *t = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){for (int k = 0; k < 3; ++k){int temp = t[3 * j + k];temp += ((rand() % (2 * level)) - level);if (temp < 0)temp = 0;if (temp > 255)temp = 255;t[3 * j + k] = temp;}}}return result;
}

二、实战案例

2.1、主函数

在这里插入图片描述

#include<opencv2\opencv.hpp>
//using namespace cv;
//using namespace std;#define max2(a,b) (a>b?a:b)
#define max3(a,b,c) (a>b?max2(a,c):max2(b,c))
#define min2(a,b) (a<b?a:b)
#define min3(a,b,c) (a<b?min2(a,c):min2(b,c))//函数申明
cv::Mat Brightness(cv::Mat src, float brightness, int contrast);				//亮度+对比度。
cv::Mat Saturation(cv::Mat src, int saturation);								//饱和度
cv::Mat HighLight(cv::Mat src, int highlight);									//高光
cv::Mat ColorTemperature(cv::Mat src, int warm);								//暖色调
cv::Mat Shadow(cv::Mat src, int shadow);										//阴影cv::Mat Sharpen(cv::Mat input, int percent, int type);							//图像锐化
cv::Mat Grainy(cv::Mat src, int level);											//颗粒感
cv::Mat Cartoon(cv::Mat src, double clevel, int d, double sigma, int size);		//漫画效果
cv::Mat WhiteBalcane_PRA(cv::Mat src);											//白平衡-完美反射算法(效果偏白)
cv::Mat WhiteBalcane_Gray(cv::Mat src);											//白平衡-灰度世界算法(效果偏蓝)
cv::Mat Relief(cv::Mat src);													//浮雕
cv::Mat Eclosion(cv::Mat src, cv::Point center, float level);					//羽化int main(int argc, char* argv[])
{//(1)读取图像std::string img_path = "test.jpg";cv::Mat src = cv::imread(img_path, 1);//(2)判断图像是否读取成功if (!src.data){std::cout << "can't read image!" << std::endl;return -1;}float brightness_value = 1;		//[0, 10]			亮度。暗~亮:[0, 1] ~ [1, 10]int contrast_value = 0;			//[-100, 100]		对比度。int saturation_value = 0;		//[-100, 100]		饱和度。int highlight_value = 0;		//[-100, 100]		高光。int warm_value = 0;				//[-100, 100]		暖色调。int shadow_value = 0;			//[-100, 100]		阴影。int sharpen_value = 0;			//[-100, 100]		锐化。[-1000000, 1000000]int grainy_value = 0;			//[0, 100]			颗粒感。int eclosion_flag = 0;			//[0, 1]			羽化。int cartoon_flag = 0;			//[0, 1]			漫画效果。clevel阈值40-80,d阈值0-10,sigma阈值10-250,size阈值10-25int reflect_flag = 0;			//[0, 1]			白平衡-完美反射。int world_flag = 0;				//[0, 1]			白平衡-灰度世界。int relief_flag = 0;			//[0, 1]			浮雕。cv::Mat dst = src.clone();if (brightness_value != 1)dst = Brightness(dst, brightness_value, 0);if (contrast_value != 0)dst = Brightness(dst, 1, contrast_value);if (saturation_value != 0)dst = Saturation(dst, saturation_value);if (highlight_value != 0)dst = HighLight(dst, highlight_value);if (warm_value != 0)dst = ColorTemperature(dst, warm_value);if (shadow_value != 0)dst = Shadow(dst, shadow_value);if (sharpen_value != 0)dst = Sharpen(dst, sharpen_value, 0);if (grainy_value != 0)dst = Grainy(dst, grainy_value);if (cartoon_flag != 0)dst = Cartoon(dst, 80, 5, 150, 20);		//clevel阈值40-80,d阈值0-10,sigma阈值10-250,size阈值10-25说if (reflect_flag != 0)dst = WhiteBalcane_PRA(dst);if (world_flag != 0)dst = WhiteBalcane_Gray(dst);if (relief_flag != 0)dst = Relief(dst);if (eclosion_flag != 0)dst = Eclosion(dst, cv::Point(src.cols / 2, src.rows / 2), 0.8f);//(4)显示图像cv::imshow("src", src);cv::imshow("锐化", dst);cv::waitKey(0);		//等待用户任意按键后结束暂停功能return 0;
}

2.2、函数定义

//--------------------------------------------------------------------------------
//调整对比度与亮度
cv::Mat Brightness(cv::Mat src, float brightness, int contrast)
{cv::Mat dst;dst = cv::Mat::zeros(src.size(), src.type());		//新建空白模板:大小/类型与原图像一致,像素值全0。int height = src.rows;								//获取图像高度int width = src.cols;								//获取图像宽度float alpha = brightness;							//亮度(0~1为暗,1~正无穷为亮)float beta = contrast;								//对比度cv::Mat template1;src.convertTo(template1, CV_32F);					//将CV_8UC1转换为CV32F1数据格式。for (int row = 0; row < height; row++){for (int col = 0; col < width; col++){if (src.channels() == 3){float b = template1.at<cv::Vec3f>(row, col)[0];		//获取通道的像素值(blue)float g = template1.at<cv::Vec3f>(row, col)[1];		//获取通道的像素值(green)float r = template1.at<cv::Vec3f>(row, col)[2];		//获取通道的像素值(red)//cv::saturate_cast<uchar>(vaule):需注意,value值范围必须在0~255之间。dst.at<cv::Vec3b>(row, col)[0] = cv::saturate_cast<uchar>(b * alpha + beta);		//修改通道的像素值(blue)dst.at<cv::Vec3b>(row, col)[1] = cv::saturate_cast<uchar>(g * alpha + beta);		//修改通道的像素值(green)dst.at<cv::Vec3b>(row, col)[2] = cv::saturate_cast<uchar>(r * alpha + beta);		//修改通道的像素值(red)}else if (src.channels() == 1){float v = src.at<uchar>(row, col);											//获取通道的像素值(单)dst.at<uchar>(row, col) = cv::saturate_cast<uchar>(v * alpha + beta);		//修改通道的像素值(单)//saturate_cast<uchar>:主要是为了防止颜色溢出操作。如果color<0,则color等于0;如果color>255,则color等于255。}}}return dst;
}//--------------------------------------------------------------------------------
// 饱和度
cv::Mat Saturation(cv::Mat src, int saturation)
{float Increment = saturation * 1.0f / 100;cv::Mat temp = src.clone();int row = src.rows;int col = src.cols;for (int i = 0; i < row; ++i){uchar *t = temp.ptr<uchar>(i);uchar *s = src.ptr<uchar>(i);for (int j = 0; j < col; ++j){uchar b = s[3 * j];uchar g = s[3 * j + 1];uchar r = s[3 * j + 2];float max = max3(r, g, b);float min = min3(r, g, b);float delta, value;float L, S, alpha;delta = (max - min) / 255;if (delta == 0)continue;value = (max + min) / 255;L = value / 2;if (L < 0.5)S = delta / value;elseS = delta / (2 - value);if (Increment >= 0){if ((Increment + S) >= 1)alpha = S;elsealpha = 1 - Increment;alpha = 1 / alpha - 1;t[3 * j + 2] =static_cast<uchar>( r + (r - L * 255) * alpha);t[3 * j + 1] = static_cast<uchar>(g + (g - L * 255) * alpha);t[3 * j] = static_cast<uchar>(b + (b - L * 255) * alpha);}else{alpha = Increment;t[3 * j + 2] = static_cast<uchar>(L * 255 + (r - L * 255) * (1 + alpha));t[3 * j + 1] = static_cast<uchar>(L * 255 + (g - L * 255) * (1 + alpha));t[3 * j] = static_cast<uchar>(L * 255 + (b - L * 255) * (1 + alpha));}}}return temp;
}//--------------------------------------------------------------------------------
// 高光
cv::Mat HighLight(cv::Mat src, int highlight)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定高光区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());thresh = gray.mul(gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = highlight / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j] + 1.0f;br[j] = (1.0f / t[0] * th[j])*bright;}}}// 高光提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}//--------------------------------------------------------------------------------
// 暖色调
cv::Mat ColorTemperature(cv::Mat src, int warm)
{cv::Mat result = src.clone();int row = src.rows;int col = src.cols;int level = warm/2;for (int i = 0; i < row; ++i){uchar* a = src.ptr<uchar>(i);uchar* r = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){int R,G,B;// R通道R = a[j * 3 + 2];R = R + level;if (R > 255) {r[j * 3 + 2] = 255;}else if (R < 0) {r[j * 3 + 2] = 0;}else {r[j * 3 + 2] = R;}// G通道G = a[j * 3 + 1];G = G + level;if (G > 255) {r[j * 3 + 1] = 255;}else if (G < 0) {r[j * 3 + 1] = 0;}else {r[j * 3 + 1] = G;}// B通道B = a[j * 3];B = B - level;if (B > 255) {r[j * 3] = 255;}else if (B < 0) {r[j * 3] = 0;}else {r[j * 3] = B;}}}return result;
}//--------------------------------------------------------------------------------
// 阴影
cv::Mat Shadow(cv::Mat src, int shadow)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定阴影区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());	thresh = (1.0f - gray).mul(1.0f - gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = shadow / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j]+ 1.0f;   br[j] = (1.0f / t[0] * th[j])*bright;               }}}// 阴影提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}//--------------------------------------------------------------------------------
// 漫画效果
cv::Mat Cartoon(cv::Mat src, double clevel, int d, double sigma, int size)
{//(1)中值滤波cv::Mat m;cv::medianBlur(src, m, 7);//(2)提取轮廓cv::Mat c;clevel = cv::max(40., cv::min(80., clevel));cv::Canny(m, c, clevel, clevel *3);//(3)轮廓膨胀cv::Mat k = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));cv::dilate(c, c, k);//(4)图像反转c = c / 255;c = 1 - c;//(5)均值滤波cv::Mat cf;c.convertTo(cf, CV_32FC1);				// 类型转换		cv::blur(cf, cf, cv::Size(5, 5));		//(6)双边滤波cv::Mat srcb;d = cv::max(0, cv::min(10, d));sigma = cv::max(10., cv::min(250., sigma));cv::bilateralFilter(src, srcb, d, sigma, sigma);size = cv::max(10, cv::min(25, size));cv::Mat temp = srcb / size;temp = temp * size;//(7)通道合并cv::Mat c3;cv::Mat cannyChannels[] = { cf, cf, cf };cv::merge(cannyChannels, 3, c3);//(8)图像相乘cv::Mat tempf;temp.convertTo(tempf, CV_32FC3);		// 类型转换cv::multiply(tempf, c3, tempf);			tempf.convertTo(temp, CV_8UC3);			// 类型转换return temp;
}//--------------------------------------------------------------------------------
// 白平衡-灰度世界
cv::Mat WhiteBalcane_Gray(cv::Mat src)
{//(1)3通道处理cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}//(2)通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);//(3)计算通道灰度值均值double Bm = cv::mean(Channel[0])[0];double Gm = cv::mean(Channel[1])[0];double Rm = cv::mean(Channel[2])[0];double Km = (Bm + Gm + Rm) / 3;//(4)通道灰度值调整Channel[0] *= Km / Bm;Channel[1] *= Km / Gm;Channel[2] *= Km / Rm;//(5)通道合并cv::merge(Channel, result);return result;
}//--------------------------------------------------------------------------------
// 白平衡-完美反射
cv::Mat WhiteBalcane_PRA(cv::Mat src)
{//(1)3通道处理cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}//(2)通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);//(3)计算单通道最大值int row = src.rows;int col = src.cols;int RGBSum[766] = { 0 };uchar maxR, maxG, maxB;for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];RGBSum[sum]++;maxB = cv::max(maxB, b[j]);maxG = cv::max(maxG, g[j]);maxR = cv::max(maxR, r[j]);}}//(4)计算最亮区间下限Tint T = 0;int num = 0;int K = static_cast<int>(row * col * 0.1);for (int i = 765; i >= 0; --i){num += RGBSum[i];if (num > K){T = i;break;}}//(5)计算单通道亮区平均值double Bm = 0.0, Gm = 0.0, Rm = 0.0;int count = 0;for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];if (sum > T){Bm += b[j];Gm += g[j];Rm += r[j];count++;}}}Bm /= count;Gm /= count;Rm /= count;//(6)通道调整Channel[0] *= maxB / Bm;Channel[1] *= maxG / Gm;Channel[2] *= maxR / Rm;//(7)通道合并cv::merge(Channel, result);return result;
}//--------------------------------------------------------------------------------
// 浮雕
cv::Mat Relief(cv::Mat src)
{CV_Assert(src.channels() == 3);int row = src.rows;int col = src.cols;cv::Mat temp = src.clone();for (int i = 1; i < row-1; ++i){uchar *s1 = src.ptr<uchar>(i - 1);uchar *s2 = src.ptr<uchar>(i + 1);uchar *t = temp.ptr<uchar>(i);for (int j = 1; j < col-1; ++j){for (int k = 0; k < 3; ++k){int RGB = s1[3 * (j - 1) + k] - s2[3 * (j + 1) + k] + 128;if (RGB < 0)RGB = 0;if (RGB > 255)RGB = 255;t[3*j+k] =(uchar)RGB;}}}return temp;
}//--------------------------------------------------------------------------------
// 羽化
cv::Mat Eclosion(cv::Mat src, cv::Point center, float level)
{if (level > 0.9)level = 0.9f;float diff = (1-level) * (src.rows / 2 * src.rows / 2 + src.cols / 2 * src.cols / 2);cv::Mat result = src.clone();for (int i = 0; i < result.rows; ++i){for (int j = 0; j < result.cols; ++j){float dx = float(center.x - j);float dy = float(center.y - i);float ra = dx * dx + dy * dy;float m = ((ra-diff) / diff * 255)>0? ((ra - diff) / diff * 255):0;int b = result.at<cv::Vec3b>(i, j)[0];int g = result.at<cv::Vec3b>(i, j)[1];int r = result.at<cv::Vec3b>(i, j)[2];b = (int)(b+ m);g = (int)(g + m);r = (int)(r + m);result.at<cv::Vec3b>(i, j)[0] = (b > 255 ? 255 : (b < 0 ? 0 : b));result.at<cv::Vec3b>(i, j)[1] = (g > 255 ? 255 : (g < 0 ? 0 : g));result.at<cv::Vec3b>(i, j)[2] = (r > 255 ? 255 : (r < 0 ? 0 : r));}}return result;
}//--------------------------------------------------------------------------------
// 锐化
cv::Mat Sharpen(cv::Mat input, int percent, int type)
{cv::Mat result;cv::Mat s = input.clone();cv::Mat kernel;switch (type){case 0:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);case 1:kernel = (cv::Mat_<int>(3, 3) <<-1, -1, -1,-1, 8, -1,-1, -1, -1);default:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);}cv::filter2D(s, s, s.depth(), kernel);result = input + s * 0.01 * percent;return result;
}//--------------------------------------------------------------------------------
// 颗粒感
cv::Mat Grainy(cv::Mat src, int level)
{int row = src.rows;int col = src.cols;if (level > 100)level = 100;if (level < 0)level = 0;cv::Mat result = src.clone();for (int i = 0; i < row; ++i){uchar *t = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){for (int k = 0; k < 3; ++k){int temp = t[3 * j + k];temp += ((rand() % (2 * level)) - level);if (temp < 0)temp = 0;if (temp > 255)temp = 255;t[3 * j + k] = temp;}}}return result;
}

这篇关于Opencv C++图像处理:亮度+对比度+饱和度+高光+暖色调+阴影+漫画效果+白平衡+浮雕+羽化+锐化+颗粒感的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/356859

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2