Opencv C++图像处理:亮度+对比度+饱和度+高光+暖色调+阴影+漫画效果+白平衡+浮雕+羽化+锐化+颗粒感

本文主要是介绍Opencv C++图像处理:亮度+对比度+饱和度+高光+暖色调+阴影+漫画效果+白平衡+浮雕+羽化+锐化+颗粒感,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、多功能色彩调整
    • 1.1、亮度
    • 1.2、对比度
    • 1.3、饱和度
    • 1.4、高光
    • 1.5、暖色调
    • 1.6、阴影
    • 1.7、漫画效果
    • 1.8、白平衡-灰度世界
    • 1.9、白平衡-完美反射
    • 1.10、浮雕
    • 1.11、羽化
    • 1.12、锐化
    • 1.13、颗粒感
  • 二、实战案例
    • 2.1、主函数
    • 2.2、函数定义

更多详细信息请看:OpenCV专栏:翟天保Steven

一、多功能色彩调整

1.1、亮度

在这里插入图片描述

//--------------------------------------------------------------------------------
// 亮度与对比度
cv::Mat Brightness(cv::Mat src, float brightness, int contrast)
{cv::Mat dst;dst = cv::Mat::zeros(src.size(), src.type());		//新建空白模板:大小/类型与原图像一致,像素值全0。int height = src.rows;								//获取图像高度int width = src.cols;								//获取图像宽度float alpha = brightness;							//亮度(0~1为暗,1~正无穷为亮)float beta = contrast;								//对比度cv::Mat template1;src.convertTo(template1, CV_32F);					//将CV_8UC1转换为CV32F1数据格式。for (int row = 0; row < height; row++){for (int col = 0; col < width; col++){if (src.channels() == 3){float b = template1.at<cv::Vec3f>(row, col)[0];		//获取通道的像素值(blue)float g = template1.at<cv::Vec3f>(row, col)[1];		//获取通道的像素值(green)float r = template1.at<cv::Vec3f>(row, col)[2];		//获取通道的像素值(red)//cv::saturate_cast<uchar>(vaule):需注意,value值范围必须在0~255之间。dst.at<cv::Vec3b>(row, col)[0] = cv::saturate_cast<uchar>(b * alpha + beta);		//修改通道的像素值(blue)dst.at<cv::Vec3b>(row, col)[1] = cv::saturate_cast<uchar>(g * alpha + beta);		//修改通道的像素值(green)dst.at<cv::Vec3b>(row, col)[2] = cv::saturate_cast<uchar>(r * alpha + beta);		//修改通道的像素值(red)}else if (src.channels() == 1){float v = src.at<uchar>(row, col);											//获取通道的像素值(单)dst.at<uchar>(row, col) = cv::saturate_cast<uchar>(v * alpha + beta);		//修改通道的像素值(单)//saturate_cast<uchar>:主要是为了防止颜色溢出操作。如果color<0,则color等于0;如果color>255,则color等于255。}}}return dst;
}

1.2、对比度

在这里插入图片描述

//--------------------------------------------------------------------------------
// 亮度与对比度
cv::Mat Brightness(cv::Mat src, float brightness, int contrast)
{cv::Mat dst;dst = cv::Mat::zeros(src.size(), src.type());		//新建空白模板:大小/类型与原图像一致,像素值全0。int height = src.rows;								//获取图像高度int width = src.cols;								//获取图像宽度float alpha = brightness;							//亮度(0~1为暗,1~正无穷为亮)float beta = contrast;								//对比度cv::Mat template1;src.convertTo(template1, CV_32F);					//将CV_8UC1转换为CV32F1数据格式。for (int row = 0; row < height; row++){for (int col = 0; col < width; col++){if (src.channels() == 3){float b = template1.at<cv::Vec3f>(row, col)[0];		//获取通道的像素值(blue)float g = template1.at<cv::Vec3f>(row, col)[1];		//获取通道的像素值(green)float r = template1.at<cv::Vec3f>(row, col)[2];		//获取通道的像素值(red)//cv::saturate_cast<uchar>(vaule):需注意,value值范围必须在0~255之间。dst.at<cv::Vec3b>(row, col)[0] = cv::saturate_cast<uchar>(b * alpha + beta);		//修改通道的像素值(blue)dst.at<cv::Vec3b>(row, col)[1] = cv::saturate_cast<uchar>(g * alpha + beta);		//修改通道的像素值(green)dst.at<cv::Vec3b>(row, col)[2] = cv::saturate_cast<uchar>(r * alpha + beta);		//修改通道的像素值(red)}else if (src.channels() == 1){float v = src.at<uchar>(row, col);											//获取通道的像素值(单)dst.at<uchar>(row, col) = cv::saturate_cast<uchar>(v * alpha + beta);		//修改通道的像素值(单)//saturate_cast<uchar>:主要是为了防止颜色溢出操作。如果color<0,则color等于0;如果color>255,则color等于255。}}}return dst;
}

1.3、饱和度

在这里插入图片描述

//--------------------------------------------------------------------------------
// 饱和度
cv::Mat Saturation(cv::Mat src, int saturation)
{float Increment = saturation * 1.0f / 100;cv::Mat temp = src.clone();int row = src.rows;int col = src.cols;for (int i = 0; i < row; ++i){uchar *t = temp.ptr<uchar>(i);uchar *s = src.ptr<uchar>(i);for (int j = 0; j < col; ++j){uchar b = s[3 * j];uchar g = s[3 * j + 1];uchar r = s[3 * j + 2];float max = max3(r, g, b);float min = min3(r, g, b);float delta, value;float L, S, alpha;delta = (max - min) / 255;if (delta == 0)continue;value = (max + min) / 255;L = value / 2;if (L < 0.5)S = delta / value;elseS = delta / (2 - value);if (Increment >= 0){if ((Increment + S) >= 1)alpha = S;elsealpha = 1 - Increment;alpha = 1 / alpha - 1;t[3 * j + 2] =static_cast<uchar>( r + (r - L * 255) * alpha);t[3 * j + 1] = static_cast<uchar>(g + (g - L * 255) * alpha);t[3 * j] = static_cast<uchar>(b + (b - L * 255) * alpha);}else{alpha = Increment;t[3 * j + 2] = static_cast<uchar>(L * 255 + (r - L * 255) * (1 + alpha));t[3 * j + 1] = static_cast<uchar>(L * 255 + (g - L * 255) * (1 + alpha));t[3 * j] = static_cast<uchar>(L * 255 + (b - L * 255) * (1 + alpha));}}}return temp;
}

1.4、高光

在这里插入图片描述

//--------------------------------------------------------------------------------
// 高光
cv::Mat HighLight(cv::Mat src, int highlight)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定高光区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());thresh = gray.mul(gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = highlight / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j] + 1.0f;br[j] = (1.0f / t[0] * th[j])*bright;}}}// 高光提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}

1.5、暖色调

在这里插入图片描述

//--------------------------------------------------------------------------------
// 暖色调
cv::Mat ColorTemperature(cv::Mat src, int warm)
{cv::Mat result = src.clone();int row = src.rows;int col = src.cols;int level = warm/2;for (int i = 0; i < row; ++i){uchar* a = src.ptr<uchar>(i);uchar* r = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){int R,G,B;// R通道R = a[j * 3 + 2];R = R + level;if (R > 255) {r[j * 3 + 2] = 255;}else if (R < 0) {r[j * 3 + 2] = 0;}else {r[j * 3 + 2] = R;}// G通道G = a[j * 3 + 1];G = G + level;if (G > 255) {r[j * 3 + 1] = 255;}else if (G < 0) {r[j * 3 + 1] = 0;}else {r[j * 3 + 1] = G;}// B通道B = a[j * 3];B = B - level;if (B > 255) {r[j * 3] = 255;}else if (B < 0) {r[j * 3] = 0;}else {r[j * 3] = B;}}}return result;
}

1.6、阴影

在这里插入图片描述

//--------------------------------------------------------------------------------
// 阴影
cv::Mat Shadow(cv::Mat src, int shadow)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定阴影区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());	thresh = (1.0f - gray).mul(1.0f - gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = shadow / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j]+ 1.0f;   br[j] = (1.0f / t[0] * th[j])*bright;               }}}// 阴影提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}

1.7、漫画效果

在这里插入图片描述

//--------------------------------------------------------------------------------
// 漫画效果
cv::Mat Cartoon(cv::Mat src, double clevel, int d, double sigma, int size)
{// 中值滤波cv::Mat m;cv::medianBlur(src, m, 7);// 提取轮廓cv::Mat c;clevel = cv::max(40., cv::min(80., clevel));cv::Canny(m, c, clevel, clevel *3);// 轮廓膨胀加深cv::Mat k = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));cv::dilate(c, c, k);// 反转c = c / 255;c = 1 - c;// 类型转化cv::Mat cf;c.convertTo(cf, CV_32FC1);// 均值滤波cv::blur(cf, cf, cv::Size(5, 5));// 双边滤波cv::Mat srcb;d = cv::max(0, cv::min(10, d));sigma = cv::max(10., cv::min(250., sigma));cv::bilateralFilter(src, srcb, d, sigma, sigma);size = cv::max(10, cv::min(25, size));cv::Mat temp = srcb / size;temp = temp * size;// 通道合并cv::Mat c3;cv::Mat cannyChannels[] = { cf, cf, cf };cv::merge(cannyChannels, 3, c3);// 类型转化cv::Mat tempf;temp.convertTo(tempf, CV_32FC3);// 图像相乘cv::multiply(tempf, c3, tempf);// 类型转化tempf.convertTo(temp, CV_8UC3);return temp;
}

1.8、白平衡-灰度世界

在这里插入图片描述

//--------------------------------------------------------------------------------
// 白平衡-灰度世界
cv::Mat WhiteBalcane_Gray(cv::Mat src)
{cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}// 通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);// 计算通道灰度值均值double Bm = cv::mean(Channel[0])[0];double Gm = cv::mean(Channel[1])[0];double Rm = cv::mean(Channel[2])[0];double Km = (Bm + Gm + Rm) / 3;// 通道灰度值调整Channel[0] *= Km / Bm;Channel[1] *= Km / Gm;Channel[2] *= Km / Rm;// 合并通道cv::merge(Channel, result);return result;
}

1.9、白平衡-完美反射

在这里插入图片描述

//--------------------------------------------------------------------------------
// 白平衡-完美反射
cv::Mat WhiteBalcane_PRA(cv::Mat src)
{cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}// 通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);// 定义参数int row = src.rows;int col = src.cols;int RGBSum[766] = { 0 };uchar maxR, maxG, maxB;// 计算单通道最大值for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];RGBSum[sum]++;maxB = cv::max(maxB, b[j]);maxG = cv::max(maxG, g[j]);maxR = cv::max(maxR, r[j]);}}// 计算最亮区间下限Tint T = 0;int num = 0;int K = static_cast<int>(row * col * 0.1);for (int i = 765; i >= 0; --i){num += RGBSum[i];if (num > K){T = i;break;}}// 计算单通道亮区平均值double Bm = 0.0, Gm = 0.0, Rm = 0.0;int count = 0;for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];if (sum > T){Bm += b[j];Gm += g[j];Rm += r[j];count++;}}}Bm /= count;Gm /= count;Rm /= count;// 通道调整Channel[0] *= maxB / Bm;Channel[1] *= maxG / Gm;Channel[2] *= maxR / Rm;// 合并通道cv::merge(Channel, result);return result;
}

1.10、浮雕

在这里插入图片描述

//--------------------------------------------------------------------------------
// 浮雕
cv::Mat Relief(cv::Mat src)
{CV_Assert(src.channels() == 3);int row = src.rows;int col = src.cols;cv::Mat temp = src.clone();for (int i = 1; i < row-1; ++i){uchar *s1 = src.ptr<uchar>(i - 1);uchar *s2 = src.ptr<uchar>(i + 1);uchar *t = temp.ptr<uchar>(i);for (int j = 1; j < col-1; ++j){for (int k = 0; k < 3; ++k){int RGB = s1[3 * (j - 1) + k] - s2[3 * (j + 1) + k] + 128;if (RGB < 0)RGB = 0;if (RGB > 255)RGB = 255;t[3*j+k] =(uchar)RGB;}}}return temp;
}

1.11、羽化

在这里插入图片描述

//--------------------------------------------------------------------------------
// 羽化
cv::Mat Eclosion(cv::Mat src, cv::Point center, float level)
{if (level > 0.9)level = 0.9f;float diff = (1-level) * (src.rows / 2 * src.rows / 2 + src.cols / 2 * src.cols / 2);cv::Mat result = src.clone();for (int i = 0; i < result.rows; ++i){for (int j = 0; j < result.cols; ++j){float dx = float(center.x - j);float dy = float(center.y - i);float ra = dx * dx + dy * dy;float m = ((ra-diff) / diff * 255)>0? ((ra - diff) / diff * 255):0;int b = result.at<cv::Vec3b>(i, j)[0];int g = result.at<cv::Vec3b>(i, j)[1];int r = result.at<cv::Vec3b>(i, j)[2];b = (int)(b+ m);g = (int)(g + m);r = (int)(r + m);result.at<cv::Vec3b>(i, j)[0] = (b > 255 ? 255 : (b < 0 ? 0 : b));result.at<cv::Vec3b>(i, j)[1] = (g > 255 ? 255 : (g < 0 ? 0 : g));result.at<cv::Vec3b>(i, j)[2] = (r > 255 ? 255 : (r < 0 ? 0 : r));}}return result;
}

1.12、锐化

在这里插入图片描述

//--------------------------------------------------------------------------------
// 锐化
cv::Mat Sharpen(cv::Mat input, int percent, int type)
{cv::Mat result;cv::Mat s = input.clone();cv::Mat kernel;switch (type){case 0:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);case 1:kernel = (cv::Mat_<int>(3, 3) <<-1, -1, -1,-1, 8, -1,-1, -1, -1);default:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);}cv::filter2D(s, s, s.depth(), kernel);result = input + s * 0.01 * percent;return result;
}

1.13、颗粒感

在这里插入图片描述

//--------------------------------------------------------------------------------
// 颗粒感
cv::Mat Grainy(cv::Mat src, int level)
{int row = src.rows;int col = src.cols;if (level > 100)level = 100;if (level < 0)level = 0;cv::Mat result = src.clone();for (int i = 0; i < row; ++i){uchar *t = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){for (int k = 0; k < 3; ++k){int temp = t[3 * j + k];temp += ((rand() % (2 * level)) - level);if (temp < 0)temp = 0;if (temp > 255)temp = 255;t[3 * j + k] = temp;}}}return result;
}

二、实战案例

2.1、主函数

在这里插入图片描述

#include<opencv2\opencv.hpp>
//using namespace cv;
//using namespace std;#define max2(a,b) (a>b?a:b)
#define max3(a,b,c) (a>b?max2(a,c):max2(b,c))
#define min2(a,b) (a<b?a:b)
#define min3(a,b,c) (a<b?min2(a,c):min2(b,c))//函数申明
cv::Mat Brightness(cv::Mat src, float brightness, int contrast);				//亮度+对比度。
cv::Mat Saturation(cv::Mat src, int saturation);								//饱和度
cv::Mat HighLight(cv::Mat src, int highlight);									//高光
cv::Mat ColorTemperature(cv::Mat src, int warm);								//暖色调
cv::Mat Shadow(cv::Mat src, int shadow);										//阴影cv::Mat Sharpen(cv::Mat input, int percent, int type);							//图像锐化
cv::Mat Grainy(cv::Mat src, int level);											//颗粒感
cv::Mat Cartoon(cv::Mat src, double clevel, int d, double sigma, int size);		//漫画效果
cv::Mat WhiteBalcane_PRA(cv::Mat src);											//白平衡-完美反射算法(效果偏白)
cv::Mat WhiteBalcane_Gray(cv::Mat src);											//白平衡-灰度世界算法(效果偏蓝)
cv::Mat Relief(cv::Mat src);													//浮雕
cv::Mat Eclosion(cv::Mat src, cv::Point center, float level);					//羽化int main(int argc, char* argv[])
{//(1)读取图像std::string img_path = "test.jpg";cv::Mat src = cv::imread(img_path, 1);//(2)判断图像是否读取成功if (!src.data){std::cout << "can't read image!" << std::endl;return -1;}float brightness_value = 1;		//[0, 10]			亮度。暗~亮:[0, 1] ~ [1, 10]int contrast_value = 0;			//[-100, 100]		对比度。int saturation_value = 0;		//[-100, 100]		饱和度。int highlight_value = 0;		//[-100, 100]		高光。int warm_value = 0;				//[-100, 100]		暖色调。int shadow_value = 0;			//[-100, 100]		阴影。int sharpen_value = 0;			//[-100, 100]		锐化。[-1000000, 1000000]int grainy_value = 0;			//[0, 100]			颗粒感。int eclosion_flag = 0;			//[0, 1]			羽化。int cartoon_flag = 0;			//[0, 1]			漫画效果。clevel阈值40-80,d阈值0-10,sigma阈值10-250,size阈值10-25int reflect_flag = 0;			//[0, 1]			白平衡-完美反射。int world_flag = 0;				//[0, 1]			白平衡-灰度世界。int relief_flag = 0;			//[0, 1]			浮雕。cv::Mat dst = src.clone();if (brightness_value != 1)dst = Brightness(dst, brightness_value, 0);if (contrast_value != 0)dst = Brightness(dst, 1, contrast_value);if (saturation_value != 0)dst = Saturation(dst, saturation_value);if (highlight_value != 0)dst = HighLight(dst, highlight_value);if (warm_value != 0)dst = ColorTemperature(dst, warm_value);if (shadow_value != 0)dst = Shadow(dst, shadow_value);if (sharpen_value != 0)dst = Sharpen(dst, sharpen_value, 0);if (grainy_value != 0)dst = Grainy(dst, grainy_value);if (cartoon_flag != 0)dst = Cartoon(dst, 80, 5, 150, 20);		//clevel阈值40-80,d阈值0-10,sigma阈值10-250,size阈值10-25说if (reflect_flag != 0)dst = WhiteBalcane_PRA(dst);if (world_flag != 0)dst = WhiteBalcane_Gray(dst);if (relief_flag != 0)dst = Relief(dst);if (eclosion_flag != 0)dst = Eclosion(dst, cv::Point(src.cols / 2, src.rows / 2), 0.8f);//(4)显示图像cv::imshow("src", src);cv::imshow("锐化", dst);cv::waitKey(0);		//等待用户任意按键后结束暂停功能return 0;
}

2.2、函数定义

//--------------------------------------------------------------------------------
//调整对比度与亮度
cv::Mat Brightness(cv::Mat src, float brightness, int contrast)
{cv::Mat dst;dst = cv::Mat::zeros(src.size(), src.type());		//新建空白模板:大小/类型与原图像一致,像素值全0。int height = src.rows;								//获取图像高度int width = src.cols;								//获取图像宽度float alpha = brightness;							//亮度(0~1为暗,1~正无穷为亮)float beta = contrast;								//对比度cv::Mat template1;src.convertTo(template1, CV_32F);					//将CV_8UC1转换为CV32F1数据格式。for (int row = 0; row < height; row++){for (int col = 0; col < width; col++){if (src.channels() == 3){float b = template1.at<cv::Vec3f>(row, col)[0];		//获取通道的像素值(blue)float g = template1.at<cv::Vec3f>(row, col)[1];		//获取通道的像素值(green)float r = template1.at<cv::Vec3f>(row, col)[2];		//获取通道的像素值(red)//cv::saturate_cast<uchar>(vaule):需注意,value值范围必须在0~255之间。dst.at<cv::Vec3b>(row, col)[0] = cv::saturate_cast<uchar>(b * alpha + beta);		//修改通道的像素值(blue)dst.at<cv::Vec3b>(row, col)[1] = cv::saturate_cast<uchar>(g * alpha + beta);		//修改通道的像素值(green)dst.at<cv::Vec3b>(row, col)[2] = cv::saturate_cast<uchar>(r * alpha + beta);		//修改通道的像素值(red)}else if (src.channels() == 1){float v = src.at<uchar>(row, col);											//获取通道的像素值(单)dst.at<uchar>(row, col) = cv::saturate_cast<uchar>(v * alpha + beta);		//修改通道的像素值(单)//saturate_cast<uchar>:主要是为了防止颜色溢出操作。如果color<0,则color等于0;如果color>255,则color等于255。}}}return dst;
}//--------------------------------------------------------------------------------
// 饱和度
cv::Mat Saturation(cv::Mat src, int saturation)
{float Increment = saturation * 1.0f / 100;cv::Mat temp = src.clone();int row = src.rows;int col = src.cols;for (int i = 0; i < row; ++i){uchar *t = temp.ptr<uchar>(i);uchar *s = src.ptr<uchar>(i);for (int j = 0; j < col; ++j){uchar b = s[3 * j];uchar g = s[3 * j + 1];uchar r = s[3 * j + 2];float max = max3(r, g, b);float min = min3(r, g, b);float delta, value;float L, S, alpha;delta = (max - min) / 255;if (delta == 0)continue;value = (max + min) / 255;L = value / 2;if (L < 0.5)S = delta / value;elseS = delta / (2 - value);if (Increment >= 0){if ((Increment + S) >= 1)alpha = S;elsealpha = 1 - Increment;alpha = 1 / alpha - 1;t[3 * j + 2] =static_cast<uchar>( r + (r - L * 255) * alpha);t[3 * j + 1] = static_cast<uchar>(g + (g - L * 255) * alpha);t[3 * j] = static_cast<uchar>(b + (b - L * 255) * alpha);}else{alpha = Increment;t[3 * j + 2] = static_cast<uchar>(L * 255 + (r - L * 255) * (1 + alpha));t[3 * j + 1] = static_cast<uchar>(L * 255 + (g - L * 255) * (1 + alpha));t[3 * j] = static_cast<uchar>(L * 255 + (b - L * 255) * (1 + alpha));}}}return temp;
}//--------------------------------------------------------------------------------
// 高光
cv::Mat HighLight(cv::Mat src, int highlight)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定高光区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());thresh = gray.mul(gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = highlight / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j] + 1.0f;br[j] = (1.0f / t[0] * th[j])*bright;}}}// 高光提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}//--------------------------------------------------------------------------------
// 暖色调
cv::Mat ColorTemperature(cv::Mat src, int warm)
{cv::Mat result = src.clone();int row = src.rows;int col = src.cols;int level = warm/2;for (int i = 0; i < row; ++i){uchar* a = src.ptr<uchar>(i);uchar* r = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){int R,G,B;// R通道R = a[j * 3 + 2];R = R + level;if (R > 255) {r[j * 3 + 2] = 255;}else if (R < 0) {r[j * 3 + 2] = 0;}else {r[j * 3 + 2] = R;}// G通道G = a[j * 3 + 1];G = G + level;if (G > 255) {r[j * 3 + 1] = 255;}else if (G < 0) {r[j * 3 + 1] = 0;}else {r[j * 3 + 1] = G;}// B通道B = a[j * 3];B = B - level;if (B > 255) {r[j * 3] = 255;}else if (B < 0) {r[j * 3] = 0;}else {r[j * 3] = B;}}}return result;
}//--------------------------------------------------------------------------------
// 阴影
cv::Mat Shadow(cv::Mat src, int shadow)
{// 生成灰度图cv::Mat gray = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat f = src.clone();f.convertTo(f, CV_32FC3);std::vector<cv::Mat> pics;split(f, pics);gray = 0.299f*pics[2] + 0.587*pics[2] + 0.114*pics[0];gray = gray / 255.f;// 确定阴影区cv::Mat thresh = cv::Mat::zeros(gray.size(), gray.type());	thresh = (1.0f - gray).mul(1.0f - gray);// 取平均值作为阈值cv::Scalar t = mean(thresh);cv::Mat mask = cv::Mat::zeros(gray.size(), CV_8UC1);mask.setTo(255, thresh >= t[0]);// 参数设置int max = 4;float bright = shadow / 100.0f / max;float mid = 1.0f + max * bright;// 边缘平滑过渡cv::Mat midrate = cv::Mat::zeros(src.size(), CV_32FC1);cv::Mat brightrate = cv::Mat::zeros(src.size(), CV_32FC1);for (int i = 0; i < src.rows; ++i){uchar *m = mask.ptr<uchar>(i);float *th = thresh.ptr<float>(i);float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);for (int j = 0; j < src.cols; ++j){if (m[j] == 255){mi[j] = mid;br[j] = bright;}else {mi[j] = (mid - 1.0f) / t[0] * th[j]+ 1.0f;   br[j] = (1.0f / t[0] * th[j])*bright;               }}}// 阴影提亮,获取结果图cv::Mat result = cv::Mat::zeros(src.size(), src.type());for (int i = 0; i < src.rows; ++i){float *mi = midrate.ptr<float>(i);float *br = brightrate.ptr<float>(i);uchar *in = src.ptr<uchar>(i);uchar *r = result.ptr<uchar>(i);for (int j = 0; j < src.cols; ++j){for (int k = 0; k < 3; ++k){float temp = pow(float(in[3 * j + k]) / 255.f, 1.0f / mi[j])*(1.0 / (1 - br[j]));if (temp > 1.0f)temp = 1.0f;if (temp < 0.0f)temp = 0.0f;uchar utemp = uchar(255*temp);r[3 * j + k] = utemp;}}}return result;
}//--------------------------------------------------------------------------------
// 漫画效果
cv::Mat Cartoon(cv::Mat src, double clevel, int d, double sigma, int size)
{//(1)中值滤波cv::Mat m;cv::medianBlur(src, m, 7);//(2)提取轮廓cv::Mat c;clevel = cv::max(40., cv::min(80., clevel));cv::Canny(m, c, clevel, clevel *3);//(3)轮廓膨胀cv::Mat k = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));cv::dilate(c, c, k);//(4)图像反转c = c / 255;c = 1 - c;//(5)均值滤波cv::Mat cf;c.convertTo(cf, CV_32FC1);				// 类型转换		cv::blur(cf, cf, cv::Size(5, 5));		//(6)双边滤波cv::Mat srcb;d = cv::max(0, cv::min(10, d));sigma = cv::max(10., cv::min(250., sigma));cv::bilateralFilter(src, srcb, d, sigma, sigma);size = cv::max(10, cv::min(25, size));cv::Mat temp = srcb / size;temp = temp * size;//(7)通道合并cv::Mat c3;cv::Mat cannyChannels[] = { cf, cf, cf };cv::merge(cannyChannels, 3, c3);//(8)图像相乘cv::Mat tempf;temp.convertTo(tempf, CV_32FC3);		// 类型转换cv::multiply(tempf, c3, tempf);			tempf.convertTo(temp, CV_8UC3);			// 类型转换return temp;
}//--------------------------------------------------------------------------------
// 白平衡-灰度世界
cv::Mat WhiteBalcane_Gray(cv::Mat src)
{//(1)3通道处理cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}//(2)通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);//(3)计算通道灰度值均值double Bm = cv::mean(Channel[0])[0];double Gm = cv::mean(Channel[1])[0];double Rm = cv::mean(Channel[2])[0];double Km = (Bm + Gm + Rm) / 3;//(4)通道灰度值调整Channel[0] *= Km / Bm;Channel[1] *= Km / Gm;Channel[2] *= Km / Rm;//(5)通道合并cv::merge(Channel, result);return result;
}//--------------------------------------------------------------------------------
// 白平衡-完美反射
cv::Mat WhiteBalcane_PRA(cv::Mat src)
{//(1)3通道处理cv::Mat result = src.clone();if (src.channels() != 3){std::cout << "The number of image channels is not 3." << std::endl;return result;}//(2)通道分离std::vector<cv::Mat> Channel;cv::split(src, Channel);//(3)计算单通道最大值int row = src.rows;int col = src.cols;int RGBSum[766] = { 0 };uchar maxR, maxG, maxB;for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];RGBSum[sum]++;maxB = cv::max(maxB, b[j]);maxG = cv::max(maxG, g[j]);maxR = cv::max(maxR, r[j]);}}//(4)计算最亮区间下限Tint T = 0;int num = 0;int K = static_cast<int>(row * col * 0.1);for (int i = 765; i >= 0; --i){num += RGBSum[i];if (num > K){T = i;break;}}//(5)计算单通道亮区平均值double Bm = 0.0, Gm = 0.0, Rm = 0.0;int count = 0;for (int i = 0; i < row; ++i){uchar *b = Channel[0].ptr<uchar>(i);uchar *g = Channel[1].ptr<uchar>(i);uchar *r = Channel[2].ptr<uchar>(i);for (int j = 0; j < col; ++j){int sum = b[j] + g[j] + r[j];if (sum > T){Bm += b[j];Gm += g[j];Rm += r[j];count++;}}}Bm /= count;Gm /= count;Rm /= count;//(6)通道调整Channel[0] *= maxB / Bm;Channel[1] *= maxG / Gm;Channel[2] *= maxR / Rm;//(7)通道合并cv::merge(Channel, result);return result;
}//--------------------------------------------------------------------------------
// 浮雕
cv::Mat Relief(cv::Mat src)
{CV_Assert(src.channels() == 3);int row = src.rows;int col = src.cols;cv::Mat temp = src.clone();for (int i = 1; i < row-1; ++i){uchar *s1 = src.ptr<uchar>(i - 1);uchar *s2 = src.ptr<uchar>(i + 1);uchar *t = temp.ptr<uchar>(i);for (int j = 1; j < col-1; ++j){for (int k = 0; k < 3; ++k){int RGB = s1[3 * (j - 1) + k] - s2[3 * (j + 1) + k] + 128;if (RGB < 0)RGB = 0;if (RGB > 255)RGB = 255;t[3*j+k] =(uchar)RGB;}}}return temp;
}//--------------------------------------------------------------------------------
// 羽化
cv::Mat Eclosion(cv::Mat src, cv::Point center, float level)
{if (level > 0.9)level = 0.9f;float diff = (1-level) * (src.rows / 2 * src.rows / 2 + src.cols / 2 * src.cols / 2);cv::Mat result = src.clone();for (int i = 0; i < result.rows; ++i){for (int j = 0; j < result.cols; ++j){float dx = float(center.x - j);float dy = float(center.y - i);float ra = dx * dx + dy * dy;float m = ((ra-diff) / diff * 255)>0? ((ra - diff) / diff * 255):0;int b = result.at<cv::Vec3b>(i, j)[0];int g = result.at<cv::Vec3b>(i, j)[1];int r = result.at<cv::Vec3b>(i, j)[2];b = (int)(b+ m);g = (int)(g + m);r = (int)(r + m);result.at<cv::Vec3b>(i, j)[0] = (b > 255 ? 255 : (b < 0 ? 0 : b));result.at<cv::Vec3b>(i, j)[1] = (g > 255 ? 255 : (g < 0 ? 0 : g));result.at<cv::Vec3b>(i, j)[2] = (r > 255 ? 255 : (r < 0 ? 0 : r));}}return result;
}//--------------------------------------------------------------------------------
// 锐化
cv::Mat Sharpen(cv::Mat input, int percent, int type)
{cv::Mat result;cv::Mat s = input.clone();cv::Mat kernel;switch (type){case 0:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);case 1:kernel = (cv::Mat_<int>(3, 3) <<-1, -1, -1,-1, 8, -1,-1, -1, -1);default:kernel = (cv::Mat_<int>(3, 3) <<0, -1, 0,-1, 4, -1,0, -1, 0);}cv::filter2D(s, s, s.depth(), kernel);result = input + s * 0.01 * percent;return result;
}//--------------------------------------------------------------------------------
// 颗粒感
cv::Mat Grainy(cv::Mat src, int level)
{int row = src.rows;int col = src.cols;if (level > 100)level = 100;if (level < 0)level = 0;cv::Mat result = src.clone();for (int i = 0; i < row; ++i){uchar *t = result.ptr<uchar>(i);for (int j = 0; j < col; ++j){for (int k = 0; k < 3; ++k){int temp = t[3 * j + k];temp += ((rand() % (2 * level)) - level);if (temp < 0)temp = 0;if (temp > 255)temp = 255;t[3 * j + k] = temp;}}}return result;
}

这篇关于Opencv C++图像处理:亮度+对比度+饱和度+高光+暖色调+阴影+漫画效果+白平衡+浮雕+羽化+锐化+颗粒感的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/356859

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C