YOLOv8 C2f模块融合shuffleAttention注意力机制

2023-11-06 12:01

本文主要是介绍YOLOv8 C2f模块融合shuffleAttention注意力机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 引言

1.1YOLOv8直接添加注意力机制

yolov8添加注意力机制是一个非常常见的操作,常见的操作直接将注意力机制添加至YOLOv8的某一层之后,这种改进特别常见。
示例如下:
新版yolov8添加注意力机制(以NAMAttention注意力机制为例)
YOLOv8添加注意力机制(ShuffleAttention为例)


知网上常见的添加注意力机制的论文均使用的上述方式。
下面展示一种将注意力机制融合至模块中的方法。

1.2 YOLOv8 C2f融合注意力机制

C2f模块融合注意力机制,而不是直接放置在某一层后面。
示例如下:
YOLOv8将注意力机制融合进入C2f模块(SE注意力机制为例)


以及本篇shuffleAttention注意力机制。

1.3常见注意力机制

以下是一些常见的注意力机制实现的代码,具体看此贴。
常见注意力机制代码实现

2. 实验

2.1 ShuffleAttention

Shuffle注意力机制,代码如下:

class ShuffleAttention(nn.Module):def __init__(self, channel=512, reduction=16, G=8):super().__init__()self.G = Gself.channel = channelself.avg_pool = nn.AdaptiveAvgPool2d(1)self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))self.sigmoid = nn.Sigmoid()def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)@staticmethoddef channel_shuffle(x, groups):b, c, h, w = x.shapex = x.reshape(b, groups, -1, h, w)x = x.permute(0, 2, 1, 3, 4)# flattenx = x.reshape(b, -1, h, w)return xdef forward(self, x):b, c, h, w = x.size()# group into subfeaturesx = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w# channel_splitx_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w# channel attentionx_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1x_channel = x_0 * self.sigmoid(x_channel)# spatial attentionx_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,wx_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,wx_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w# concatenate along channel axisout = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,wout = out.contiguous().view(b, -1, h, w)# channel shuffleout = self.channel_shuffle(out, 2)return out

可以将以上注意力机制的代码放到ultralytics/nn/modules/conv.py目录的最后。

2.2 模块添加

ShuffleAttention_Bottleneck和C2f_ShuffleAttention模块代码如下:

class ShuffleAttention_Bottleneck(nn.Module):def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):super().__init__()c_ = int(c2 * e)self.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.se = ShuffleAttention(c2, 16, 8)self.add = shortcut and c1 == c2def forward(self, x):return x + self.se(self.cv2(self.cv1(x))) if self.add else self.se(self.cv2(self.cv1(x)))class C2f_ShuffleAttention(nn.Module):def __init__(self, c1, c2, shortcut = False, g = 1, n = 1, e = 0.5):super().__init__()self.c = int(c2 * e)self.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)self.m = nn.ModuleList(ShuffleAttention_Bottleneck(self.c, self.c, shortcut, g, k=((3,3),(3,3)), e = 1.0) for _ in range(n))def forward(self, x):y = list(self.cv1(x).chunk(2,1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))

可以将以上ShuffleAttention_Bottleneck和C2f_ShuffleAttention模块的代码放到ultralytics/nn/modules/conv.py目录的最后。


在ultralytics/nn/modules/conv.py文件的最前面添加C2f_ShuffleAttention。
在这里插入图片描述
在ultralytics/nn/modules/ __ init__.py中,添加C2f_ShuffleAttention模块。
在这里插入图片描述

2.3 task.py改写

在ultralytics/nn/tasks.py中,在parse_model(d, ch, verbose=True)方法中,添加C2f_ShuffleAttention即可。
保持与C2f的调用一样。
在这里插入图片描述

2.4 模型改写

创建模块:ultralytics/cfg/models/v8/yolov8n-C2f_ShuffleAttention.yaml,以yolov8n为例:修改后的模型如下:

 # Ultralytics YOLO 🚀, GPL-3.0 license# Parameters
nc: 1  # number of classes
depth_multiple: 0.33  # scales module repeats
width_multiple: 0.25  # scales convolution channels# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f_ShuffleAttention, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f_ShuffleAttention, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f_ShuffleAttention, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f_ShuffleAttention, [1024, True]]- [-1, 1, SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

也可以尝试不替换backbone中的C2f模块而替换head模块中的某些模块。

3.运行截图

模型运行图片如下
在这里插入图片描述
没有报错
在这里插入图片描述

这篇关于YOLOv8 C2f模块融合shuffleAttention注意力机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/356499

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

韦季李输入法_输入法和鼠标的深度融合

在数字化输入的新纪元,传统键盘输入方式正悄然进化。以往,面对实体键盘,我们常需目光游离于屏幕与键盘之间,以确认指尖下的精准位置。而屏幕键盘虽直观可见,却常因占据屏幕空间,迫使我们在操作与视野间做出妥协,频繁调整布局以兼顾输入与界面浏览。 幸而,韦季李输入法的横空出世,彻底颠覆了这一现状。它不仅对输入界面进行了革命性的重构,更巧妙地将鼠标这一传统外设融入其中,开创了一种前所未有的交互体验。 想象

【编程底层思考】垃圾收集机制,GC算法,垃圾收集器类型概述

Java的垃圾收集(Garbage Collection,GC)机制是Java语言的一大特色,它负责自动管理内存的回收,释放不再使用的对象所占用的内存。以下是对Java垃圾收集机制的详细介绍: 一、垃圾收集机制概述: 对象存活判断:垃圾收集器定期检查堆内存中的对象,判断哪些对象是“垃圾”,即不再被任何引用链直接或间接引用的对象。内存回收:将判断为垃圾的对象占用的内存进行回收,以便重新使用。

【Tools】大模型中的自注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 自注意力机制(Self-Attention)是一种在Transformer等大模型中经常使用的注意力机制。该机制通过对输入序列中的每个元素计算与其他元素之间的相似性,

如何通俗理解注意力机制?

1、注意力机制(Attention Mechanism)是机器学习和深度学习中一种模拟人类注意力的方法,用于提高模型在处理大量信息时的效率和效果。通俗地理解,它就像是在一堆信息中找到最重要的部分,把注意力集中在这些关键点上,从而更好地完成任务。以下是几个简单的比喻来帮助理解注意力机制: 2、寻找重点:想象一下,你在阅读一篇文章的时候,有些段落特别重要,你会特别注意这些段落,反复阅读,而对其他部分

【Tools】大模型中的注意力机制

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 在大模型中,注意力机制是一种重要的技术,它被广泛应用于自然语言处理领域,特别是在机器翻译和语言模型中。 注意力机制的基本思想是通过计算输入序列中各个位置的权重,以确

Jenkins构建Maven聚合工程,指定构建子模块

一、设置单独编译构建子模块 配置: 1、Root POM指向父pom.xml 2、Goals and options指定构建模块的参数: mvn -pl project1/project1-son -am clean package 单独构建project1-son项目以及它所依赖的其它项目。 说明: mvn clean package -pl 父级模块名/子模块名 -am参数