本文主要是介绍AssertionError assert I.ndim == 4 and I.shape[1] == 3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
运行代码:
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriterdataset = torchvision.datasets.CIFAR10("CIFAR10",train=False,transform=torchvision.transforms.ToTensor(),download=True)
# 注意dataset中transform参数接收的是个对象,所以要加上括号,还有就是之后使用神经网络进行运算的时候需要的数据类型是tensor类型,所以transforms参数要加上。
dataloader = DataLoader(dataset,batch_size=64)# 搭建一个简单的网络
class Booze(nn.Module):# 继承nn.Module的初始化def __init__(self):super().__init__()# 注意这里是创建一个全局变量所以要加上一个self 当out_channels远大于in_channels时需要对原图像进行扩充,也就是padding的值不能设为0了,需要根据公式self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=(3),stride=1,padding=0)# 重写forward函数def forward(self,x):x = self.conv1(x)return x# 初始化网络
obj = Booze()
# 查看网络
print(obj)
'''
Booze((conv1): Conv2d(3, 6, kernel_size=(3, 3), stride=(1, 1))
)
'''writer = SummaryWriter("logs")
step = 0for data in dataloader:imgs,targets = dataoutput = obj(imgs)# torch.Size([64, 3, 32, 32]) 64张3通道32X32的图片print(imgs.shape)# torch.Size([64, 6, 30, 30]) 64张6通道30X30的图片print(output.shape)# 使用tensorboard可视化 注意多张图片是要使用add_images而不是add_imagewriter.add_images("input",imgs,step)# 由于output是6通道数的无法显示,直接可视化会报错,所以我们需要对output进行reshape reshape的第二参数中当一个数未知时,你可以填入-1,他会自动帮你计算,为什么会未知呢?因为就是不知道填多少,填64的话肯定不行吧,然后改变通道数相当于把多余的像素给切出来了writer.add_images("output",output,step)step+=1writer.close()
运行代码报错如下:
为什么会出错呢?
原因是我们搭建的神经网络中self.conv1 = Conv2d(in_channels=3,out_channels=6,kernel_size=(3),stride=1,padding=0)
其中out_channels=6
就是输出图片的通道数是6通道的,6通道数的图片无法显示,直接使用tensorboard可视化会报错,报错的就是上述代码中的writer.add_images("output",output,step)
这一行代码,所以在执行这行代码前需要对output进行reshape,reshape成3通道数的图片。
解决方案
output = torch.reshape(output,(-1,3,30,30))
这一行代码添加到writer.add_images("output",output,step)
之前,reshape的第二参数中当一个数未知时,你可以填入-1,他会自动帮你计算,为什么会未知呢?因为就是不知道填多少,填64的话肯定不行吧,然后改变通道数相当于把多余的像素给切出来了,放到了batch_size中。
# (-1,3,30,30) = (batch_size,channels,H,W)
output = torch.reshape(output,(-1,3,30,30))
writer.add_images("output",output,step)
这篇关于AssertionError assert I.ndim == 4 and I.shape[1] == 3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!